An Introduction to UMTS Technology

An Introduction to UMTS Technology: Testing, Specifications and Standard Bodies for Engineers and Managers

Dr. Faris Muhammad

BrownWalker Press Boca Raton

An Introduction to UMTS Technology: Testing, Specifications and Standard Bodies for Engineers and Managers

Copyright © 2008 Dr. Faris Muhammad. All rights reserved.

No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission from the publisher.

BrownWalker Press Boca Raton, Florida • USA 2008 www.brownwalker.com

ISBN-10: 1-1599-446-0 (paper) ISBN-13: 978-159942-446-0 (paper)

ISBN-10: 1-1599-447-9 (ebook) ISBN-13: 978-159942-447-7 (ebook)

Typeset by Trendsette Publication, India.

Library of Congress Cataloging-in-Publication Data

Muhammad, Faris A., 1964-

An introduction to UMTS technology: testing, specifications, and standard bodies for engineers and managers / Dr Faris Muhammad.

p. cm.

Includes index.

ISBN-13: 978-1-59942-446-0 (hbk. : alk. paper)

ISBN-10: 1-59942-446-0 (hbk.: alk. paper)

1. Universal Mobile Telecommunications System–Testing. 2. Universal Mobile Telecommunications System–Standards. I. Title.

TK5103.4883.M84 2008 621.3845'6--dc22

Dedication

To my late father and mother—

"My Lord! Have mercy on them both as they did care for me when I was little." May God bless their souls in heaven.

Table of Content

Chapter One – Introduction	1
NTRODUCTION TO UMTS TECHNOLOGY	1
Principles of W-CDMA	1
Spread Spectrum	1
Protocols and Channels	2
Protocol Architecture	2
Layer 1 (L1) or Physical Layer	2
Layer 2 (L2) or Data Link Layer	2
Layer 3 (L3) or Network Layer	3
Transport channels	4
Downlink Common and Dedicated	4
Uplink Common and Dedicated	4
Logical Channels	5
Control Channels	7
Traffic Channels	7
Physical Channels	8
UL Channels	8
DL Channels	8
Radio Bearers	9
HANDOVER	9
Soft Handover	9
Hard Handover	10
Inter-Frequency HHO	10 10
Intra-Frequency HHO	10
Inter-System HHO	10
Compressed mode UTRAN to GSM handover	13
GSM to UTRAN handover	13
Inter RAT cell re-selection	13
	เจ

viii Table of Content

Inter RAT cell change	19
Conclusions	20
HSDPA	20
Technical motivation	21
High speed channels	21
Adaptive modulation and coding schemes in HSDPA	23
Fast packet scheduling function	23
Fast hybrid-ARQ with soft combining or incremental redundancy	23
HSUPA	24
New HSUPA Channels	24
DL L1 Channels	24
UL L1 Channels	25
HSUPA Capability	25
Key Features of HSUPA	27
Uplink Scheduling Hybrid Automatic Repeat Request (HARQ)	27 27
Reduction of Transmission Time Interval	27
Impact on Radio Access Network Architecture	27
MBMS	28
The new M-Channels	30
Logical channels	30
Physical and indication channel	30
MAC	31
Transport channel	31
Layer 1	31
MBMS Session Walkthrough	31
INTRODUCTION TO TESTING	33
Chapter Two – UMTS Conformance Protocol	
Testing – Part One	35
PROTOCOL CONFORMANCE TESTING	35
UE PROTOCOL TESTING	36
UE in Idle mode (Single Radio Access Technology)	36
Public Land UE Network Selection	36
Cell Selection and Re-Selection	38
Idle Mode UE and dual RAT	39
PLMN and RAT Selection	39
Cell Selection and Reselection	40
Test of Measurement Report	41
Test of Classmark	41
DTM	42
Measurement reports and Cell change order procedures	42

Table of Content ix

Handover to UTRAN while in DTM	43
Inter-System Hard Handover from GSM to UTRAN	43
Layer 2 – Medium Access Control (MAC)	45
Testing of Logical – Transport Channels Mapping	45
High Speed - DSCH Layer 2 / MAC-hs	46 47
Enhanced-DCH Layer 2 / MAC-es/e	47
Radio Link Control (RLC) MBMS	53
Packet Data Convergence Protocol (PDCP)	53
PDCP Robust Header Compression (RoHC)	56
Broadcast Multicast Control (BMC)	56
Radio Resource Control RRC	57
RRC Connection Management Procedure	57
RRC Radio Bearer Control Procedures	65
RRC connection mobility procedure	86
RRC Measurement Control and Report	99
REFERENCES	107
Chapter Two – UMTS Conformance Protocol	
Testing – Part Two	109
•	
MORE UE PROTOCOL TESTS	109
MBMS	110
Mobility Management	111
CS Call Control	117
Outgoing Call	117
Establishment of an incoming call / Initial conditions	122
In call functions	125 126
Session Management PDP context activation	126
PDP context activation PDP context modification procedure	127
PDP context deactivation procedures	127
MBMS Context Activation	128
MBMS Context deactivation	128
PS attach procedure	128
PS detach procedure	131
Routing area updating procedure	132
P-TMSI reallocation	134
PS authentication	135
Identification procedure	135
GMM READY timer handling	135
Service Request procedure (UMTS Only)	135
Emergency Call	137

X Table of Content

Radio Bearers Services	138
Combinations on DPCH	138
Combinations on PDSCH and DPCH	146
Combinations on SCCPCH	146
Combinations on DPCH and HS-PDSCH	148
Combinations on DPCH, HS-PDSCH and E-DPDCH	150
Short message service (SMS)	151
SMS point to point on CS mode	152
SMS point to point on PS mode	153
A-GPS	154
Signalling tests	154
Performance Tests	157
Acoustic Testing	158
USIM Testing	159
Subscription related tests	159
Security related Tests	159
PLMN related tests	162
Subscription independent tests	164
Phonebook content handling	164
USIM service handling	165
USAT Testing	166
Proactive UICC commands	166
Data Download to UICC	199
CALL CONTROL BY USIM	199
EVENT DOWNLOAD	201
MO SHORT MESSAGE CONTROL BY USIM	202
Handling of command number	202
IMS	202
P-CSCF Discovery	202
Registration	203
Authentication	205
Subscription	205
Notification	206
Call Control	206
Signalling Compression (SIGComp)	206
REFERENCES	207
Chapter Three – UMTS Conformance RF Testing	209
RF PERFORMANCE TESTING	209
UE RF Testing	210
Transmitter Characteristics	210
	210
Output Power and Frequency	410

Table of Content xi

Output Power Dynamics in the Uplink	212
Transmit ON/OFF Power	212
Transmit Modulation.	213
Receiver Characteristics	213
Performance Tests	213
Demodulation of DCH in downlink Transmit	
diversity modes	214
Demodulation in Handover conditions	214
Power control in downlink	215
Downlink compressed mode	215
Blind transport format detection	215
Demodulation of Paging Channel (PCH)	215
Detection of Acquisition Indicator (AI)	215
RRM Testing	215
Idle Mode	215
UTRAN Connected Mode Mobility	216
RRC Connection Control	217
Timing and Signalling Characteristics	218
UE Measurements Procedures	218
Measurements Performance Requirements	219
Performance requirements for HSDPA	222
Demodulation of HS-DSCH (Fixed Reference Channel)	222
Reporting of Channel Quality Indicator	226
HS-SCCH Detection Performance	227
Performance requirement (E-DCH)	228
Detection of E-DCH HARQ ACK Indicator Channel	228
(E-HICH) Detection of E-DCH Relative Grant Channel (E-RGCH)	228 228
Demodulation of E-DCH Absolute Grant Channel	220
(E-AGCH)	229
NODE-B RF TESTING	229
Node-B output power	229
Frequency error	229
Output power dynamics	229
Output RF spectrum emissions	230
Transmit intermodulation	231
Transmit modulation	231
Receiver Reference sensitivity level	232
Receiver Dynamic range	232
Adjacent Channel Selectivity (ACS) of the Receiver	233
Receiver Blocking characteristics	233
Receiver Intermodulation Characteristics	233
Receiver Spurious Emissions	233

xii Table of Content

Receiver Verification of the internal BER calculation Performance requirement Demodulation in static propagation conditions Demodulation of DCH in multipath fading conditions Demodulation of DCH in moving propagation conditions Demodulation of DCH in birth/death propagation conditions Verification of the internal BLER calculation Performance of signalling detection for HS-DPCCH Demodulation of E-DPDCH in multipath fading conditions Performance of signalling detection for E-DPCCH in multipath fading conditions REFERENCES	233 234 234 235 235 235 236 237 237 238
Chapter Four – Testing Types and Stages	239
TESTING TYPES OF MOBILES AND BASE STATIONS Pre-acceptance testing Conformance testing Production testing Functional Testing Unit testing Functionality testing (White and Black box testing) Regression testing I&C, maintenance, live and field-trial testing Interoperability testing and plug-fests Application and end-to-end testing Network optimisation and drive testing Load and Stress Testing Non-functional testing Verification and Validation testing (VVT) General development testing	239 241 242 243 243 243 244 245 246 247 247 248 248
Chapter Five – Conformance Testing and TTCN	251
CONFORMANCE TESTING PROTOCOL CONFORMANCE TESTING Definition Purpose Black Box testing of external behaviour Implementations Testing Approach Conformance Test and Tester Architecture Conformance Testing Languages and Tools	251 252 252 252 252 252 252 253 256

Table of Content xiii

TTCN-2	256
TTCN-3	261
More Features Required	271
Assessment of TTCN 2 and 3	272 273
VB/VC/Pearl/shell	273 273
Advantages of TTCN and Conformance Testing	2/3
Chapter Six – Standardisation and	
Validation Bodies	275
TEST CASE DEVELOPMENT	275
Summary of Conformance Test Case Lifecycle	275
TTCN-2 Test Cases	276
TTCN-3 Test Cases	278
Test Case Prose	278
Verification	279
TTCN-2 Test Case Life Cycle in Details	279
Test Case Validation	281
External validation of test cases	282
Fundamentals of the SS Manufacturer Policy	283
Validation Workflow	284
Validation Reasons	285
Validation Categories	285
Submission Rules to GCF	285
UE Certification	288
Downgrade of Test Cases	288
Multiple Test Case Paths	288
Cut-off point for Change Requests	288
UMTS Test Case Priority	289
TC DEVELOPMENT AND RELEASE PROCESS	289
Test Case SW Requirements	289
API Functions and Runtime support for Test Cases	290
Adaptation SW	291
Test Cases - Testing and Regression checks	291
Sample testing	291
Review and Release of Test Cases	291
Distribution and Updates of Test Cases	293
Planning and Prioritisation	293
Test Case Development	294
UE Test Requirements	294
TTCN TC Baseline handling	295
Test System SW/HW Updates	296
Review and Release of Test Cases	296

xiv Table of Content

APPROVAL OF TEST CASES	297
The role of the certification bodies	297
GCF	298
PTCRB	299
MCC 160	299
Standards Tracking	300
OVERVIEW OF STANDARDS	300
CR (Change Request) Management	300
Version Control of Test Cases	301
Interaction with External Bodies	301
UMTS Test Cases	301
EXTERNAL ORGANISATIONS	302
3GPP	302
RAN5	303
Test Houses	304
CAG	304
CDG	304
ETSI	304
GCF	304
GERAN (TSG-GERAN)	305
ETSI	305
MCC	305
PTCRB	306
PVG	306
RAN 5	306
UAG	306
WG3	307
Testing	307
Validation Control	307
Reviews	307
Release formalities	307
Status	307
Development	308
Validated	308
Approved	308
Storage	308
DEFINITIONS	308
REFERENCE DOCUMENTS	310
List of Abbreviations	311

Preface

The first Chapter of this book focuses on the basic concepts of W-CDMA technology. These principles are UMTS (CDMA) specific, and are unlikely used in other technologies; therefore some explanation may be necessary. Simplified introduction to these concepts will make reading this book easier.

Chapter 2 is divided into two parts, both covers protocol conformance testing. This type of testing is used throughout the initial stages of development to ensure the accuracy of a protocol implementation. It is also used in regression testing after initial product deployment to further verify any changes in the implementation/enhancement. Traditionally, conformance testing has been the domain of the telecommunications industry. The only way to ensure that standards are met is to test products in an effective way using the test specification. First part of chapter two mainly covers dle mode, dual RAT, RRC, RLC and MAC tests. Part two mainly concentrate on MBMS, MM, RB services, SMS, A-GPS, acoustic and IMS tests. This chapter lists all tests that are necessary to be conducted on different layers and modules of the UE under test. Further details of these tests can be found in the relevant standards.

Chapters 3 gives a unified and in-depth presentation of selections and RF conformance tests for UEs and NBs. In addition to the protocol conformance, the RF performance of the UE must also be verified. Many measurements of the transmitter and receiver performance are performed in a number of areas, e.g. out-of-band emissions. Measurements of the radio resource management (RRM) are performed to ensure that the control capability of the UE is operating according to the standards. The RRM is the component used to control the physical or RF layers in accordance with the requirements of the protocols from the upper layers. There are, for instance, very tight limits on the transmitter output power, as it is controlled to meet conditions such as variations in signal strength. This ensures that the handset only transmits sufficient power to maintain a reliable connection under the prevailing conditions.

xvi Introduction

Chapter 4 explains thouroghly all types of tests at different stages the system (whether UE or BS) need to go through throughout the lifecycle of the product. For example development testing is essential throughout the lifecycle of the product. Initial system validation of Layer 1 implementation is required at early stages of system development. Conformance testing has to cover L1/L2 protocol, Inter System Handover protocol, RRM protocol and RF performance and implementation of the system. Terminology may differ but the intended purposes of these test still widely used. Some of the tests may overlap in some cases for some products. This chapter provides good coverage of all tests at all stages.

Chapter 5 presents different languages and tools used in the conformance industry to carry out conformance testing. Standard bodies are using special languages like TTCN-2, TTCN-3 to specify the conformance test specifications but conventional languages like Basic/C/C++/Perl/Shell scripts still capture some of the market share for test suite implementation. The chapter gives more attention to TTCN-2 and TTCN-3 languages/tools.

Chapter 6 is the final chapter of this book. It covers many distinct processes apply to the provision of test cases. Test cases are written in prose, describing in detail how the test is carried out and the pass and fail criteria. To ensure that each test is a true representation of the original intent of the test, a validation and approval process has been set in place. Once the test case is verified by the supplier (3GPP), i.e. is satisfied that the test operates correctly, it is then given to an independent validation organisation to test for conformance with the original test specification and check for proper operation. When it has passed this test, it can be submitted to the relevant industry body for approval. After approval, it can be used in formal mobile terminal testing and certification. The standarisation and validation bodies and procedures are well detailed in this chapter.view of the procedure, as well as the equivalent but distinct procedures for the other systems is described in this chapter.

Acknowledgments

I would like to sincerely thank Mr Ian Poole and Dr Jafer H Hassan for their expert advice, guidance and encouragement throughout the preparation of this book.

I would like to express my deep gratitude to my wife Lehib for her support without which it would be impossible to complete the book.

I would also like to thank Phil Medd, Andy Summers, Kundan Sehmbey, Pradip Kar, Girish Kalra, my boss Simon Palmer, and close colleagues at Aeroflex for many interesting discussions and assistance.

I gratefully acknowledge 3GPP for granting me licence to use some of the 3GPP specifications.

Finally I would like to thank Dr Baha Hashimi for reviewing the manuscript.

Chapter One

Introduction

INTRODUCTION TO UMTS TECHNOLOGY

In this chapter basic concepts of W-CDMA are explained and discussed. These principles are UMTS (CDMA) specific, and are unlikely used in other technologies; therefore some explanation may be necessary. A simplified introduction to these concepts will make reading this book easier.

Principles of W-CDMA

Some mechanisms are required to share frequency resources in communication systems with multiple users. This mechanism is referred to as Multiple Access scheme. CDMA is a scheme where all users are transmitting on the same frequency at the same time but separated by codes.

Spread Spectrum

W-CDMA is a multiple access technique using a concept known as Spread Spectrum. In Spread Spectrum systems the information Bandwidth is spread across a wider transmission Bandwidth which is determined by a function that is independent of the transmitted information.

The original data sequence is binary multiplied with a spreading code. The bits in the spreading code are called chips and the data bits sequence are called symbols. Each user has its own spreading code. Application of the same spreading codes once again at the receiving end returns the transmitted signals to their original Bandwidths. The ratio between the transmission BW and the original BW is called the processing gain. The lower the SF the more data can by transported on the air interface. The relative strength of the desired signal and the rejection of other signals is proportionate to the number of chips over which the receiver has to integrate, which is the spreading factor. The larger the SF the larger the processing gain and hence the original signals do not need to be of high power to achieve a target quality level. The longer the symbol time the longer the integration process. This is referred to as processing gain and is directly proportional to the SF.

2 Introduction

The spreading codes (referred to as channelization codes) are unique and have low cross-correlation with other spreading codes. This means that several wideband signals can co-exist on the same frequency without interference. When the combined signal is correlated with the particular spreading code, only the original signal with the corresponding spreading code is de-spread, while the remaining component of the signal remain spread.

The principle of correlation is used at the receiving end to recover the original signal out of the noise generated by all the other users' wideband signal. As illustrated in Figure 1.1 the original data is coded and the resulting signal is then transmitted. The received signal is multiplied by the code to recover the original data. If the receiver does not know the correct code the results will be a signal almost average to zero.

Table 1.1 illustrates the differences between the two types of codes that are used in W-CDMA and the way they are used in the downlink and the uplink.

OVSF (Orthogonal Variable Spreading Factor) are designed to allow the support of simultaneous variable data rate channels. The spreading factors are assigned so that they do not come from a parent or grandparent code on the same branch of the tree. This is to avoid code clashing.

Protocols and Channels

Protocol Architecture

The diagram in Figure 1.2 illustrates in details the protocol architecture that exist across the Uu interface in a FDD UMTS system. At the lower level there is the Physical Layer (L1). This is accessed by a number of SAPs by the MAC which in turn is accessed by the RLC Layer 2 protocols.

The interconnections between different layers of protocol are defined by means of the SAPs (Service Access Points). Figure 1.2 illustrates the basic SAPs in the control and the user plane for the radio interface. Two additional SAPs are provided for the two entities (BMC and PDCP). SAPs offer a range of well defined services that will be explored further in the following sections.

Signalling messages are divided into user plane and control plane at the higher layers. RRC is a L3 entity that exists in the control plane which provide some control services to higher layers.

The air interface is layered into three protocol layers:

Layer 1 (L1) or Physical Layer

It interfaces the MAC of L2 and the RRC of L3. It offers different transport channels to the MAC.

Layer 2 (L2) or Data Link Layer

It is split into MAC, RLC, PDCP and BMC. L3 and RLC are divided into User and Control planes while BMC and PDCP exist in the User plane only.

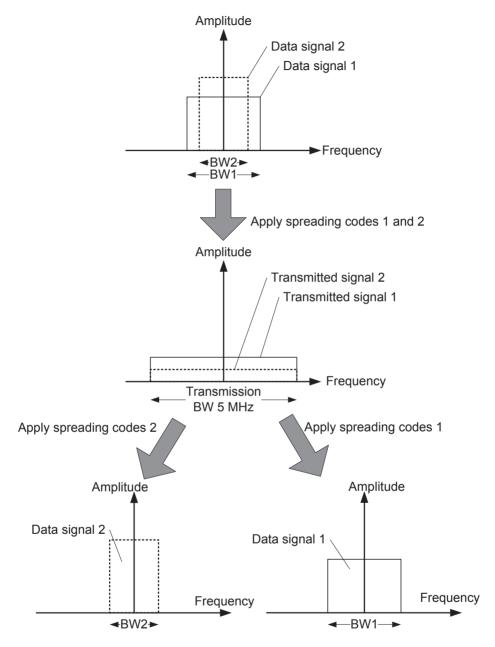


Figure 1.1 Spreading and data signal

Layer 3 (L3) or Network Layer

In the Control plane L3 is partitioned into RRC which interface with L2. The RLC provides ARQ functionality coupled with the radio transmission technique used.

4 Introduction

Code type	UL	DL
Channelization (spreading)	4-256 Physical (user) data Control data Signalling data Form the same UE OVSF	4-512 (Release 4 onward SF range is (4 D 256) Control Channels Traffic Channels Different users on the same cell OVSF
Scrambling	To isolate users Large number of codes Use long codes (Gold) 38400 chips length in 10 ms frame Also use short codes (Kasami)	To prevent co-channel interference from adjacent cells Long codes Limited to 512 codes

Table 1.1 Channelization and scrambling codes

Transport channels

These are the SAPs that are at the output of the MAC and at the input of L1. They define the characteristics with which data is transported over the air interface. Each transport channel has associated with it a Transport Format set, which defines the coding, interleaving and mapping onto Physical Layer. Transport channels define the interface by which the MAC communicates with the physical layer. There exist two types exist Dedicated and Common Transport channels, DCH is the only dedicated channel. Dedicated means there is a point to point link between the UE and the network while Common means point to multipoint link. In general they map to a specific physical channel. Transport channels are:

Downlink Common and Dedicated

DCH is only one channel and transmitted over the entire cell. It is characterized by the possibility of fast rate change (every 10 ms), fast power control and inherent addressing of UE's. Used for bidirectional transfer of data and control.

BCH is used for broadcasting system and cell specific information and is always transmitted over the entire cell with a low fixed bit rate.

FACH is transmitted over the entire cell. FACH uses slow (open loop) power control only. Transfer of small amount of data

PCH is transmitted over the entire cell. Broadcast of paging and notification messages while allowing for sleep mode.

Uplink Common and Dedicated

DCH is only one channel and transmitted over the entire cell. It is characterized by the possibility of fast rate change (every 10 ms), fast power control and inherent addressing of UE's. Used for bidirectional transfer of data and control.

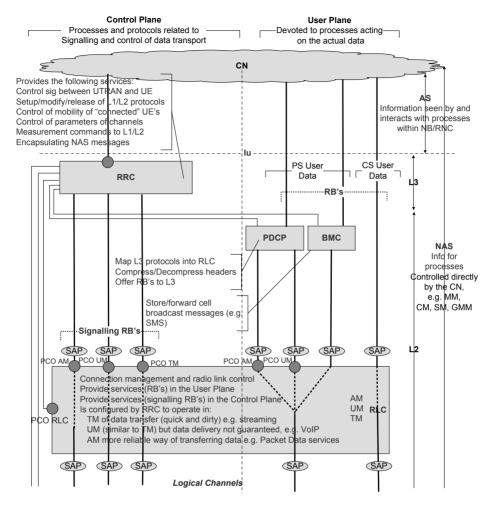


Figure 1.2a UMTS Protocols and layers

RACH is used for initial access or transfer of small amount of data. Open loop power control only.

Logical Channels

The MAC layer provides data transfer services on logical channels. Different logical channel types are defined for different kinds of data services as offered by the MAC. It is characterized by the type of information transferred. These are an information stream provided by the MAC dedicated to the transfer of a specific type of information over the radio interface. There are restrictions on the transport channel type that that can be used to carry a given logical channel. See channel mapping in Figure 1.3

6 Introduction

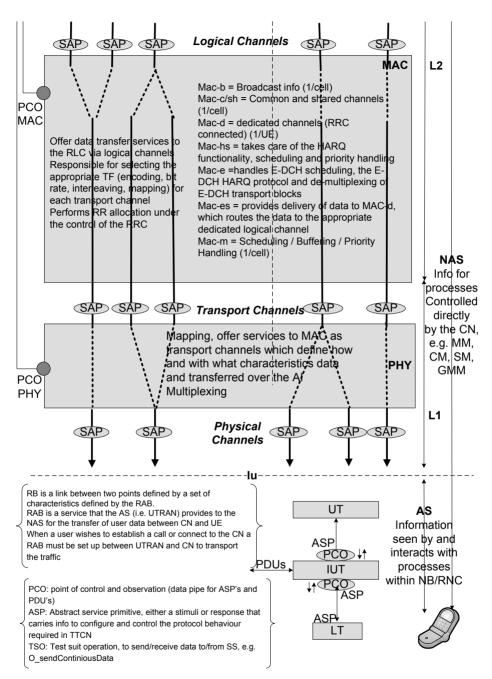


Figure 1.2b UMTS Protocols and layers

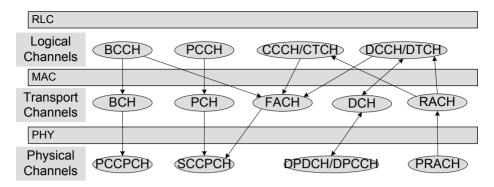


Figure 1.3 Channel mapping

Control Channels

These channels are used for control plane information

Downlink

BCCH is used to broadcast control and signalling information which is system and cell specific. Therefore it is only a downlink channel. It is carried via either the P-CCPCH or the S-CCPCH. This means that its messages can always be read by a UE, once the UE has detected a Node-B's unique scrambling code, which it does during its initial cell search.

PCCH is used to transfer paging information when the net does not know the location of the UE. Also is used when the UE is in the Cell Connected state. PCCH can be carried on PCH and it is a downlink channel only.

CCCH is a bidirectional point to multipoint channel that is used to transfer control information from the network to the UEs. It is used as part of the resource allocation procedure to carry the resource allocation procedure information. CCCH can be carried S-CCPCH.

DCCH is a point to multipoint channel that carries UE specific control information after an RRC connection is setup. DCCH can be carried on FACH or DCH (RNC to decide).

Uplink

CCCH on the uplink this is used by the UE having no RRC connection setup with the net. Also used by the UE's that are using common transport channels when accessing a new cell after cell reselection and has no resources allocated in the intended cell. CCCH can be carried on RACH.

DCCH is a control channel that can be used to transfer dedicated signalling messages from the UE to UTRAN. DCCH can be carried on RACH.

Traffic Channels

These channels are used for user plane information