Industrial Hydraulic Systems
Industrial Hydraulic Systems
-Theory and Practice

JOJI PARAMBATH
Dedicated to

my loving wife Ranjini and my sons Swaran and Siddarth
Preface

The textbook provides an in-depth coverage of conventional hydraulic systems encompassing fixed displacement pumps, control valves, and actuators as well as the most modern hydraulic systems encompassing more efficient variable-displacement pumps, electro-hydraulic proportional valves and/or servo valves with integrated electronics. The coverage is further supplemented by many typical hydraulic and electro-hydraulic circuits. The details of different types of auxiliary devices such as reservoirs, filters, accumulators and piping have also been described in this book. Topics on hydrostatic transmission, cartridge valves, load sensing pump controls, fluids, filters, and seals are given in detail. Design aspects, installation, and maintenance of hydraulic systems are added to make the book more useful to actual practitioners of hydraulic systems. Understanding the fundamental laws and principles allows the reader to use the basic theoretical concepts in practical applications. The unique feature of this textbook is that all quantities are given in the SI system as well as in the English system of units. This book provides an extensive coverage of fluid power to designers, engineers, technicians, and, students of engineering colleges, polytechnics, and vocational training institutes. This book is designed especially with an academic interest in mind. A large number of numerical examples, design problems, and sections for ‘Test your Knowledge’, end of chapter ‘Multiple Choice Questions’, and ‘Short answer Questions’ are included. This book is intended to provide the most current information available on hydraulic technology. A chapter-wise brief follows:

Chapter 1 Industrial Power Systems: From time immemorial, scientists and technologists have been searching for suitable energy sources for the economic and technological development. Apart from the mechanical power transmission system, three other major power transmission systems have been developed for transmitting power in all types of industrial and mobile machinery and equipment. These are electrical, pneumatic and hydraulic power transmission systems. This chapter explains the fundamentals of electrical, hydraulic, and pneumatic power transmission systems. This chapter also presents a brief explanation of different types of power systems.

Chapter 2 Introduction to Hydraulics: The basic concepts of hydraulics are not new. The ancient Greeks understood the power of flowing water. They invented water wheels to harness the energy of flowing water. However, modern industrial hydraulic systems, appropriately called ‘oil hydraulic systems’, utilize oil rather than water as the medium for energy transfer. A study of the underlying principles of hydraulics is most necessary for the proper understanding of the industrial hydraulic systems. This chapter explains the fundamental principles of pressure and flow. This chapter also presents a brief explanation of hydraulic fluids with their most important properties, such as viscosity, viscosity index, and bulk modulus. The basic ideas of laminar and turbulent flows are also given. Finally, the chapter presents the applications, advantages, and disadvantages of hydraulic power systems. A brief explanation of a typical hydraulic system is given for the initial familiarization of the system. A short note on standardization makes an added attraction for this chapter.

Chapter 3 Hydraulic fluids: Since the first use of water as the hydraulic power medium in the 18th century, hydraulics has become an essential branch of engineering science. Greater technological advances have been achieved in the development of numerous fluids for meeting the exacting requirements of hydraulic applications. All hydraulic systems, however, have a common need for protection against harmful contaminants. Good contamination control means cost-effective filtration and fluid analysis. The initial sections of this chapter explain, in detail, the functions, types, characteristics, and selection of hydraulic fluids. The subsequent sections present topics on fluid contamination, the effect of contamination on fluids, fluid analysis, and the quality standards of fluids.
Chapter 4 Basic Hydraulic Filtration Principles: Filters need to be the integral parts of hydraulic systems to ensure the proper operation of their pumps, valves, and actuators. As the requirements of the hydraulic systems are demanding, the prescribed cleanliness levels of their fluid media must be achieved under all operating conditions. For this reason, it is important to understand the different types of hydraulic filters and their performance ratings. This chapter presents the principles of hydraulic system filtration. These principles include the materials of filter media, various designs of filters, and the typical locations of filters in hydraulic systems. This chapter also describes the filter element performance ratings, such as the beta ratio and efficiency, and the multi-pass test to determine such ratings.

Chapter 5 Hydraulic Reservoirs & Accessories: As the usage of hydraulic systems are becoming more widespread, there is a greater need for understanding the function and operation of the essential parts of these systems including power packs. Then we can deal with them confidently. A basic power unit consists of a reservoir to store the fluid, a prime mover to power the system, a pump to move the fluid, a relief valve or pump compensator to control the maximum system pressure, a filter to clean the fluid and plumbing to convey the fluid to components. This chapter takes up a detailed discussion of hydraulic power packs and their constituent parts including reservoirs. This chapter also gives a brief note on the topic of sound reduction techniques in hydraulic systems.

Chapter 6 Hydraulic Pumps: The fundamental purpose of a hydraulic system is to convert the mechanical power from the prime mover into fluid power with the help of a power pack. The power pack that includes a pump is an essential component of the system. As industries face a steadily increasing demand for improved profitability and efficiency, it is imperative to design hydraulic systems with pumps that provide the high-pressure fluid required for these systems. This chapter takes up a detailed discussion on hydraulic pumps that include gear, vane, and piston pumps, and their variants. That is; the operation, constructional features, and the advantages and disadvantages of various types of pumps are explained. A useful explanation of pump cavitation is also given, in brief.

Chapter 7 Hydraulic Pressure Regulation: Several types of pressure control valves have been developed for the accurate pressure controls in hydraulic systems. Apart from the pressure-related controls, regulating the pressure in hydraulic systems is an important safety function, and this objective can easily be achieved by using pressure relief valves (PRVs). This chapter explains the operational characteristics of PRVs. The types, behaviour, characteristic curves, advantages, and disadvantages of PRVs are given for an in-depth study. This chapter also covers the topic on the sizing of PRVs. The functions and applications of other types of pressure control valves are discussed thoroughly in Chapter 12.

Chapter 8 Hydraulic Linear Actuators: Modern manufacturing plants and innumerable other applications require some rapid and controllable linear or rotary mechanical motion with an enormous amount of motive force for carrying out some useful tasks. This motive power can be achieved through the use of hydraulic actuators designed to work at high operating pressures. Hydraulic cylinders are simple, low-cost, and easy-to-install devices that are ideal for generating powerful linear movements. Manufacturers are bringing out various types of actuators with innovative features to make them more reliable, efficient, and safe. The latest industrial hydraulic cylinders can incorporate sensor feedback and electro-hydraulic servo valves for the sophisticated speed control and position control of the associated loads. This chapter deals with hydraulic cylinders of varying designs. The principles of operation, constructional details, and classification of the hydraulic cylinders are explained in detail. This chapter also covers the topics on the applications, advantages, and safety requirements of the cylinders.

Chapter 9 Hydraulic Rotary Actuators: The discussion on hydraulic actuators continued in this chapter with the explanation of rotary actuators. Hydraulic motors are rugged devices that transform the hydraulic power into rotary mechanical power. This chapter deals with hydraulic rotary actuators
of varying designs. The principles of operation, constructional details, and classification of semi-rotary actuators and motors are explained in detail. This chapter also covers topics on the applications, advantages, and safety requirements of the motors.

Chapter 10 Directional Control Valves and Control Circuits: Valves are critical control components used in modern industrial and mobile hydraulic applications in order to control their motion and force output. Typically the requirements are the bi-directional movement, speed control, and pressure-dependent control of the hydraulic actuators. Building a complete control solution may require different types of valves. A wide range of discrete control valves is available for obtaining the direction, pressure, and flow controls. These valves include the directional control valves, non-return valves, flow control valves, and various pressure control valves. This chapter describes the construction, operation, and application of many types of hydraulic directional control (DC) valves including the non-return valves. Hydraulic circuits given in this book may be used as a resource for reinforcing your understanding of hydraulic circuits and as a starting point for fresh designs.

Chapter 11 Flow Control Valves and Control Circuits: This chapter describes the construction, operation, and use of many types of flow control valves. They may vary in construction and design from the simple needle valve to the sophisticated pressure-compensated/temperature-compensated variable flow control valve. These valves are essentially used for getting the speed control and regenerative function in hydraulic systems. This chapter also explains various speed control methods of hydraulic actuators, such as the meter-in, meter-out, and bleed-off methods. Further, this chapter describes the theory and operation of regenerative circuits.

Chapter 12 Pressure Control Valves and Control Circuits: This chapter describes the construction, operation, and application of many types of pressure control valves, such as the pressure reducing valves, sequence valves, unloading valves, counterbalance valves, and brake valves. Several circuits are used in hydraulic systems to get many useful pressure control functions. Simple hydraulic circuits with these types of valves, designed for reducing pressure in some part of the circuit, the sequencing of operations, the unloading of the system pump, and the load holding feature, are illustrated in this chapter to lay a firm foundation for the understanding and development of more complex hydraulic circuits.

Chapter 13 Hydraulic Accumulators: Hydraulic accumulators are a kind of energy modulating devices used in hydraulic systems. When connected to a hydraulic system, the accumulator is meant for performing many vital functions, such as acting as a shock absorber and as a reserve of power in the system. Manufacturers are bringing out different types of accumulators and accessories to suit many application requirements of the hydraulic industry. This chapter describes the types, constructional details, and features of accumulators, in detail.

Chapter 14 Hydraulic Seals: Seals are used in all sorts of hydraulic devices involving linear or rotary motions, mainly to prevent leakage. Even though they form the vital elements in any hydraulic equipment, they are often not given the significance they deserve. Seals with different geometrical shapes and complex material formulations are available in the market, or they can be custom-made to meet the requirements. A proper sealing system is required to be selected out of various options by a designer for the efficient performance of a hydraulic device that is being designed. This chapter presents an elaborate treatment of hydraulic seals for the linear and rotary applications. The process of polymerization and the types of polymers and their characteristics are described. This chapter, further, explains the different requirements of hydraulic seals and the factors that are to be considered for the selection of seals. The classification of seals based on various parameters is elaborated. Finally, issues concerned with rotary seals are presented at the end of this chapter.

Chapter 15 Hydraulic Fluid Conductors and Fittings: Fluid conductors interconnect components of a hydraulic system for the safe and leak-free transmission of high-pressure hydraulic fluid throughout the system. As hydraulic systems are getting more and more complicated with their
operation under increased temperatures and in limited spaces, not only the fluid conductors must put up with these adverse conditions, but also handle the high working pressures, peak surge pressures, and peak flow rates. A vast number of hydraulic applications, demands numerous types of conductors to satisfy the varying individual working requirements and conditions. This chapter presents the necessary information about the constructional features, performance specifications, and other details of pipes, tubing, and hoses and their fittings.

Chapter 16 Electro-hydraulic Systems: An electro-hydraulic system, in general, consists of an electrical or electronic control part controlling a hydraulic power part. Integrating the power density of hydraulic systems with the controlling possibilities of the electric systems opens up a new world of opportunities for the high-performing hydraulic power systems. In this hybrid technology, solenoid valves or proportional valves or servo-valves are used as interfaces between the control part and the power part. The conventional solenoid valve acts as a converter that generates hydraulic outputs in response to electrical input signals. Control and feedback elements like push-buttons (PBs), relays, sensors, and timers are used in the electro-hydraulic systems. This chapter explains the functioning of primary solenoid valves and various electrical control components. Many typical electro-hydraulic circuits are also developed to illustrate various applications of electro-hydraulics.

Chapter 17 Programmable Logic Controllers (PLCs): The emergence of PLCs with more capabilities opened up the door to many control options. This chapter explains the hardware and the software features of PLCs, in an easy-to-understand manner. Many examples are worked out in this chapter explaining how the PLCs can be employed as interfaces between the input and output devices in hydraulic systems.

Chapter 18 Proportional valves: Trends in the valve industry today is towards the use of intelligent hydraulics. With this objective in mind, there is a widespread development of proportional valves complete with transducers and electronic regulators. This chapter explores the technology used in proportional valves and sheds some light on their benefits and shortcomings.

Chapter 19 Servo valves: High-performance closed-loop servo valve technology has become the norm in machine automation, where the requirements are greater precision, faster operation, and simpler adjustment. The high-performance valve in the hydraulic field is represented by an electro-hydraulic servo valve. This chapter explains the technology used in the state-of-the-art servo valves and their benefits and shortcomings.

Chapter 20 Load Sensing Systems: As with other power transmission technologies, the primary goal in designing hydraulic systems is to use less energy and do more work. Designs range from the conventional circuits to special arrangements such as load sensing and regeneration for high-end hydraulic systems for conserving energy. This chapter explains the operation of simple load sensing systems in a simplified manner and with suitable examples.

Chapter 21 Cartridge Valve Systems: With the introduction of cartridge valves in the 1950s, an important innovative approach to the design of hydraulic valves has begun. Initially, the cartridge valve was intended to perform a single function, and therefore a cavity was designed to encompass the valve. Later, the cartridge valve technology has grown to include the multi-function features and the integrated circuit features with many cartridge valves incorporated in a single manifold block. In the recent years, the cartridges valve technology has seen many improvements to reduce the leakage, and its complexity and size, and to increase its reliability, efficiency, and cost-effectiveness. This chapter describes the concepts and constructional features of the basic and the multifunction cartridge valves. The circuit ideas of a variety of multi-function cartridge valves are also presented. This chapter also describes the characteristics of the integrated manifold blocks.

Chapter 22 Hydraulic Applications and Design Features: Where a significant force is required to move an object, there we find the hydraulic actuator. The modern digital control technologies are successfully combined with the power of hydraulics. This integration has increased the application
areas of hydraulics ranging from the small assembly processes to the sophisticated steel and paper mill applications. This chapter highlights various categories of hydraulic applications, and the fundamental and design issues, in a generalized manner. It all starts with a foray into the application spectrum of the hydraulic technology. It is then followed by an explanation of the typical application concepts and the basic operations involved in these applications. This chapter also explains the design aspects of hydraulic systems. Some examples of designing typical hydraulic systems are given in the chapter.

Chapter 23 Maintenance, Troubleshooting & Safety of Hydraulic Systems: As modern hydraulic systems are designed with close tolerances, their proper maintenance is the first line of defense to prevent component failures and improve their reliability. The knowledge of various maintenance practices and troubleshooting techniques is essential for a technician to maintain the hydraulic equipment efficiently. This chapter explains all aspects of maintenance, troubleshooting, and safety of hydraulic systems, in a systematic way to make this book more useful on the shop floor.

The author has referred to innumerable articles, catalogs, documents, and handbooks published by hydraulic equipment manufacturers for the incorporating latest information in the book. Many of them are acknowledged in the references at the end of the chapters. Many companies and organizations have given their permissions to use their graphics, and the author wishes to thank them profusely. The author is indebted to his colleagues at Foremen Training Institute (FTI), Bangalore and many industrial experts for the discussions he had with them which helped to clarify points cropped up during the preparation of the book. First of all, the author would like to thank Shri S D Lahiri, Director (AT), DGT, New Delhi for providing great motivation. Next, the author would like to thank Shri J Mukhopadhyay, Shri Ramakrishne Gowda, and Shri Bharat Swamy for critically reviewing the text matter. Appreciation also goes to Mr. Jeff Young, CEO, Universal Publishers Inc. and his excellent publishing team for their support. The author would like to acknowledge the great work done by the Graphic Designer Shri. Harpreet Singh (http://www.DezinoGraphics.com) and his team member Shri. Amit Mukherjee. The author owes a word of thanks to his family and friends for their support.

The author requests all prospective readers offer their valuable comments and suggestions for further improvements. Finally, the book has been completed, and the author hopes you enjoy reading it. Have fun and good luck!

JOJI PARAMBATH
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>..</td>
<td>vii-xi</td>
</tr>
<tr>
<td>1</td>
<td>Industrial Power Systems</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Power Transmission Systems – Function & Types</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>Electrical Power System</td>
<td>2</td>
</tr>
<tr>
<td>1.4</td>
<td>Fluid Power System</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Pneumatic Power System</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Hydraulic Power System</td>
<td>3</td>
</tr>
<tr>
<td>1.5</td>
<td>Control System Functions</td>
<td>3</td>
</tr>
<tr>
<td>1.6</td>
<td>Mechanization and Automation</td>
<td>4</td>
</tr>
<tr>
<td>1.7</td>
<td>Motion Control Systems</td>
<td>4</td>
</tr>
<tr>
<td>1.8</td>
<td>Combined Representation of Power Transmission Systems</td>
<td>4</td>
</tr>
<tr>
<td>1.9</td>
<td>Comparison of Different Power Transmission Systems</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Questions</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Introduction to Hydraulics</td>
<td>8-42</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Hydrodynamics Vs Hydrostatics</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Hydraulics – Definition</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Advent of Oil Hydraulics</td>
<td>9</td>
</tr>
<tr>
<td>2.5</td>
<td>Basic Hydraulic Systems</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Constant Flow (CF) System</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Constant Pressure (CP) System</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Load-sensing (LS) system</td>
<td>10</td>
</tr>
<tr>
<td>2.6</td>
<td>Highlights in the History of Hydraulics</td>
<td>11</td>
</tr>
<tr>
<td>2.7</td>
<td>Systems of Units</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>SI System of Units</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>The US Customary (English) System of Units</td>
<td>12</td>
</tr>
<tr>
<td>2.8</td>
<td>Review of Mechanics</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Mass</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Weight</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Volume</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Density</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Specific Weight</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Specific Gravity</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Force</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Work</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Power</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Horse Power</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Torque</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Torque – Power Relations</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Energy</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Temperature</td>
<td>15</td>
</tr>
<tr>
<td>2.9</td>
<td>Hydraulic Fluids – A Brief Introduction</td>
<td>15</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>2.10</td>
<td>Pascal’s Law and its Applications</td>
<td>16</td>
</tr>
<tr>
<td>2.11</td>
<td>Hydraulic Pressure</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Pressure Units</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Pascal</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Bar</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Pounds per square inch (psi)</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Kilogram force per square centimetre</td>
<td>17</td>
</tr>
<tr>
<td>2.12</td>
<td>Absolute and Gauge Pressures</td>
<td>18</td>
</tr>
<tr>
<td>2.13</td>
<td>Pressure Levels in Hydraulics</td>
<td>18</td>
</tr>
<tr>
<td>2.14</td>
<td>Hydraulic Force</td>
<td>19</td>
</tr>
<tr>
<td>2.15</td>
<td>Force Multiplication</td>
<td>20</td>
</tr>
<tr>
<td>2.16</td>
<td>Fluid Flow</td>
<td>20</td>
</tr>
<tr>
<td>2.17</td>
<td>Flow Rate</td>
<td>21</td>
</tr>
<tr>
<td>2.18</td>
<td>Velocity of Flow</td>
<td>21</td>
</tr>
<tr>
<td>2.19</td>
<td>Flow Rate Vs Velocity of Flow</td>
<td>21</td>
</tr>
<tr>
<td>2.20</td>
<td>Laminar & Turbulent Flows</td>
<td>22</td>
</tr>
<tr>
<td>2.21</td>
<td>Characteristics of Laminar & Turbulent Flows</td>
<td>22</td>
</tr>
<tr>
<td>2.22</td>
<td>Reynolds Number</td>
<td>23</td>
</tr>
<tr>
<td>2.23</td>
<td>Viscosity –Basics</td>
<td>24</td>
</tr>
<tr>
<td>2.24</td>
<td>Absolute Viscosity</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Units of Absolute Viscosity</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Poise</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Pascal-second</td>
<td>25</td>
</tr>
<tr>
<td>2.25</td>
<td>Absolute Viscosity Unit Conversions</td>
<td>26</td>
</tr>
<tr>
<td>2.26</td>
<td>Newtonian Fluids</td>
<td>26</td>
</tr>
<tr>
<td>2.27</td>
<td>Kinematic Viscosity</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Units of Kinematic Viscosity</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Stoke</td>
<td>26</td>
</tr>
<tr>
<td>2.28</td>
<td>Other Kinematic Viscosity Units</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Saybolt Universal Seconds</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Saybolt Seconds Furol</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Degree Engler</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Redwood Seconds</td>
<td>28</td>
</tr>
<tr>
<td>2.29</td>
<td>Viscosity Measurement</td>
<td>28</td>
</tr>
<tr>
<td>2.30</td>
<td>Viscometers</td>
<td>28</td>
</tr>
<tr>
<td>2.31</td>
<td>Viscosity Classification Systems</td>
<td>28</td>
</tr>
<tr>
<td>2.32</td>
<td>Viscosity – Effect on Variation in Pressure</td>
<td>29</td>
</tr>
<tr>
<td>2.33</td>
<td>Viscosity – Effect on Variation in Temperature</td>
<td>29</td>
</tr>
<tr>
<td>2.34</td>
<td>Viscosity Index (VI) – A Mathematical Perspective</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Procedure A (For Calculating VI up to and including 100)</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Procedure B (For Calculating VI above 100)</td>
<td>31</td>
</tr>
<tr>
<td>2.35</td>
<td>Compressibility and Bulk Modulus of Hydraulic Fluids</td>
<td>32</td>
</tr>
<tr>
<td>2.36</td>
<td>Conservation of Energy</td>
<td>32</td>
</tr>
<tr>
<td>2.37</td>
<td>Forms of Energy in Hydraulic Power Systems</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Potential Energy due to Elevation</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Potential Energy due to Static Pressure</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Kinetic Energy</td>
<td>32</td>
</tr>
<tr>
<td>2.38</td>
<td>Bernoulli’s Equation</td>
<td>33</td>
</tr>
</tbody>
</table>
2.39 A Basic Hydraulic System .. 33
2.40 Advantages and Disadvantages of Hydraulic Systems 34
 Advantages .. 34
 Disadvantages .. 35
2.41 Hydraulic Applications ... 35
2.42 Standardization ... 36
2.43 Standards .. 37
2.44 Some Important Hydraulic Standards 37
Questions ... 38

3 Hydraulic Fluids .. 43-67
3.1 Introduction .. 43
3.2 Functions of Hydraulic Fluids .. 43
3.3 Characteristics of an Ideal Hydraulic Fluid 44
3.4 Preparation of Hydraulic Fluids .. 44
 Base Stock ... 44
 Additives .. 44
3.5 Fluid Characteristics ... 45
 Viscosity .. 45
 Viscosity Index (VI) .. 46
 Fluid Compressibility .. 47
 Lubricity .. 47
 Wear Resistance .. 47
 Oxidation Resistance .. 47
 Corrosion Resistance .. 48
 Air Release Property .. 48
 Foam Resistance .. 48
 Demulsibility (Water Separability) .. 48
 Heat Dissipation .. 48
 Stability ... 49
 Thermal Stability ... 49
 Chemical Stability .. 49
 Hydrolytic Stability .. 49
 Compatibility .. 49
 Filterability ... 49
 Fire-resistance ... 49
 Flash Point .. 49
 Fire Point ... 49
 Pour Point ... 50
3.6 Categories of Hydraulic Fluids ... 50
3.7 Mineral-based Fluids (Petroleum-based Fluids) 50
3.8 Fire-resistant Fluids .. 51
 Classification of Fire-resistant Hydraulic Fluids 51
 High-Water-Based-Fluids (HWBF) 51
 Oil-in-water Emulsions ... 51
 Water-in-oil Emulsions .. 52
 Water Glycol ... 52
 Synthetic Fluids ... 52
Phosphate Esters .. 52
Polyol Esters .. 52
3.9 Biodegradable Fluids .. 52
Synthetic Esters .. 53
Vegetable Oil ... 53
3.10 Food-Grade Fluids ... 53
3.11 Requirements for Hydraulic Fluids 53
3.12 Hydraulic Fluid Selection 54
3.13 Fluid Contamination & its Control 55
3.14 Contamination in Hydraulic Fluids 55
 Solid Particles .. 55
 Chemical ... 56
 Water ... 56
 Air ... 56
 Biological ... 56
3.15 Effects of Hydraulic Fluid Contamination 56
 Particulate Contamination 56
 Chemical Compounds 57
 Ingressed Moisture 56
 Air ... 57
 Excessive Heat .. 57
 Biological Contamination 57
3.16 Sources of Contamination 57
 Internally-Generated Contamination 58
 Externally-admitted Contamination 58
3.17 Contamination Control 58
3.18 Fluid Cleanness Standards 58
3.19 Typical Cleanliness Level Targets for Hydraulic Components .. 59
3.20 Hydraulic Fluid Analysis 60
 Patch Test ... 60
 Portable Laser Particle Counter 61
 Laboratory Analysis 61
 Online Fluid Monitoring 62
3.21 Disposal of Hydraulic Fluids 62
3.22 Reclaiming Hydraulic Fluids 62
Questions ... 63

4 Hydraulic Filtration Principles 68-86
4.1 Introduction ... 68
4.2 Strainers and Filters 68
4.3 Types and Classifications of Hydraulic Fluid Filters 69
 Filter Media According to the Filtration Phenomena ... 69
 Mechanical type Media 69
 Absorbent type Media 69
 Adsorbent type Media 69
 Filter Media According to the Nature of Filtration 69
 Surface Media .. 70
4.4 Filters According to Assembly Choices .. 71
4.5 Filters with Sub-assemblies ... 71
 Filter with Bypass Valve ... 71
 Duplex Type Filter ... 72
4.6 Filters According to Technology Types .. 72
 Full-flow Filtration ... 73
 Proportional-flow Filtration ... 73
4.7 Filters According to Installation Locations 73
 Suction Strainer ... 74
 Suction Filter ... 74
 Pressure Filter ... 74
 Return-line Filter ... 75
 Off-line Filtration ... 75
4.8 Comparison of Filter Types and Locations 76
4.9 Contamination Indicators .. 77
4.10 Performance Ratings of Filters .. 77
 Mesh Number/Sieve Number .. 77
 Micron Ratings .. 77
 Absolute Micron Rating .. 77
 Nominal Micron Rating ... 78
4.11 Beta Ratio ... 78
4.12 Filter Efficiency .. 78
4.13 Beta Ratio and Filter Efficiency ... 79
4.14 Differential Pressure .. 79
4.15 Particle Capture Efficiency .. 80
4.16 Burst Pressure ... 80
4.17 The Multi-pass Test ... 80
4.18 Filter Characteristics .. 81
4.19 Filter Selection ... 82
4.20 Application Notes, Hydraulic Filters ... 82
4.21 Water Removal from Hydraulic Systems 82
 Absorption ... 82
 Gravity Precipitation Unit .. 82
 Centrifuge ... 83
 Coalescer ... 83
 Vacuum Dehydration purifier ... 83
Questions .. 83

Hydraulic Reservoirs & Accessories .. 87-99
5.1 Hydraulic Power Packs ... 87
5.2 Hydraulic Reservoirs ... 88
5.3 Standard Features of Reservoirs .. 88
6.5 Fixed-displacement Pumps Vs Variable-displacement Pumps 111
6.6 Positive Displacement Hydraulic Pump 111
6.7 Mounting of Hydraulic Pumps .. 112
6.8 Side Loads on Hydraulic Pumps 113
6.9 Gear Pumps ... 113
 External Gear Pump .. 113
 Designs of Gears ... 114
 Spur Gears ... 114
 Helical Gears .. 114
 Herringbone Gears ... 115
 Characteristic Features of External Gear Pumps 115
 Volumetric Displacement of External Gear Pumps 115
 Advantages and Disadvantages of External Gear Pumps 116
 Internal Gear Pump .. 117
 Advantages and Disadvantages of Internal Gear Pumps 117
 Gerotor Pump ... 117
 Advantages and Disadvantages of Gerotor Pumps 118
 Screw Pumps .. 118
 Three-Screw Pumps ... 119
 Advantages and Disadvantages of Screw Pumps 119
6.10 Vane Pumps .. 120
 Unbalanced Vane Pump .. 120
 Balanced Vane Pump .. 121
 Variable-displacement Vane Pump 121
 Pressure-compensated Vane Pump 121
 Advantages and Disadvantages of Vane Pumps 122
 Volumetric Displacement of Vane Pumps 122
6.11 Piston Pumps ... 124
 Axial Piston Pumps ... 124
 Inline Axial Piston Pumps ... 124
 Bent Axis Piston Pump .. 125
 Radial Piston Pumps ... 125
 Advantages and Disadvantages of Piston Pumps 126
6.12 Comparison of Positive Displacement Pumps 127
6.13 Characteristic Curves of Hydraulic Pumps 128
6.14 Requirements of Hydraulic Pumps 128
6.15 Selection of Hydraulic Pumps 128
6.16 Application Notes, Hydraulic Pumps 128
6.17 Pressure Intensifier (Pressure Booster) 129
 Single-stroke or One-shot Pressure Intensifiers 129
 Reciprocating Type Pressure Intensifiers 130
Questions ... 131

7 Hydraulic Pressure Regulation .. 137-147
7.1 Introduction ... 137
7.2 Types of Pressure Relief Valves (PRVs) 137
7.3 Direct-Acting PRV ... 138
7.4 A partial Hydraulic Circuit with a PRV 138
7.5 Characteristic Behaviour of Direct-acting PRVs 139
7.6 Advantages and Disadvantages of Directing-acting PRVs 140
7.7 Pilot-operated PRV ... 141
7.8 Characteristic Behaviour of Pilot-operated PRVs 141
7.9 Advantages of Pilot-operated PRVs 142
7.10 Disadvantages of Pilot-operated PRVs 142
7.11 Backpressure on PRVs .. 142
7.12 Sizing of a PRV ... 143
7.13 Comparison of PRVs .. 145
7.14 Terminology - PRVs ... 145
 Set Pressure .. 145
 Cracking Pressure .. 145
 Full Flow Pressure ... 145
 Pressure Override .. 145
 Closing Pressure ... 145
 Overpressure .. 145
 Blowdown ... 145
 Back Pressure ... 146
 Superimposed Back Pressure 146
 Built-Up Back Pressure 146
Questions .. 146

8 Hydraulic Linear Actuators 148-174
8.1 Introduction ... 148
8.2 Linear Actuators ... 148
8.3 Basic Cylinder Working 148
8.4 Types of Hydraulic Loads 149
8.5 Terms and Definitions - Hydraulic Cylinders 150
 Maximum operating pressure 150
 Bore Diameter .. 150
 Piston-rod Diameter ... 150
 Stroke Length .. 150
 Maximum Stroke Length 150
 Cylinder Thrust/Pull ... 150
 Cylinder Input Power ... 151
 Cylinder Output power 151
 Cylinder Oil Capacity .. 151
 Cylinder Speed .. 152
8.6 Summary of Relations for Hydraulic Cylinders 153
8.7 Piston-rod Buckling .. 155
8.8 Piston-rod Size .. 156
8.9 Side Loads in Hydraulic Cylinders 156
8.10 Cylinder Drift .. 157
8.11 Construction of Hydraulic Cylinder 157
 Body Style ... 158
 Tie-rod Cylinders .. 158
 Mill Cylinders .. 159
 Threaded-end Cylinders 159
Welded Cylinders .. 159

8.12 Principal Parts of Hydraulic Cylinders 160
- Barrel ... 160
- Piston ... 160
- Piston-rod ... 160
- End-caps .. 161
- Cushion ... 161
- Seals ... 161
- Piston Wear Bands .. 161
- Piston-rod Seal/Wiper ... 161
- Piston-rod Bearing .. 161
- Piston-rod Boots .. 161
- Stop tube ... 161
8.13 Installation of Hydraulic Cylinders 162
8.14 Mounting Methods of Hydraulic Cylinders 162
8.15 Mounting Styles of Hydraulic Cylinders 163
- Tie-rod Mount ... 163
- Flange Mount ... 163
- Foot or Lug Mount ... 163
- Pin and Trunnion Mounts ... 163
- Piston-rod Mounts ... 164
- Threads ... 164
8.16 Classification of Hydraulic Actuators 164
8.17 Single-acting Cylinders ... 165
8.18 Double-acting Hydraulic Cylinders 165
8.19 Hydraulic Cylinders - Differential Vs Non-differential 166
8.20 Cushioning in Hydraulic Cylinders 167
8.21 Hydraulic Cushion Cylinder .. 167
8.22 Ram (Plunger) Cylinders .. 168
8.23 Double Rod End Cylinders ... 168
8.24 Telescopic Cylinders ... 169
- Single-acting Telescopic Cylinder 169
- Double-acting Telescopic Cylinder 169
8.25 Tandem Cylinder .. 170
8.26 Advantages of Hydraulic Cylinders 170
8.27 Application Notes, Hydraulic Cylinders 170
8.28 Hydraulic Cylinder Standards 171
Questions ... 171

9 Hydraulic Rotary Actuators ... 175-204

9.1 Introduction .. 175
9.2 Basic Motor Operation .. 176
9.3 Terms and Definitions - Hydraulic Motor 176
- Operating Pressure ... 176
- Motor Displacement .. 176
- Theoretical Flow Rate .. 177
- Slippage in Motor ... 177
- Speed ... 177
Maximum Motor Speed ... 177
Minimum Motor Speed .. 177
Input Power .. 177
Theoretical Torque .. 178
Breakaway (Starting) Torque ... 178
Running Torque ... 178
Stalling Torque ... 178
Actual Torque .. 179
Output Power ... 179
Motor Efficiency ... 179
Volumetric Efficiency .. 179
Mechanical Efficiency .. 179
Overall Efficiency ... 180

9.4 Summary of Relations for Hydraulic Motors 180
9.5 Constructional Features of Hydraulic Motors 183
 Rotary Seals .. 184
 Drain Connection ... 184
 Integrated Flushing Valve ... 184
 Integrated Brake Valve .. 184
9.6 Side Loads on Hydraulic Motors 184
9.7 Mounting of Hydraulic Motors 185
9.8 Classification of Rotary Actuators 185
 Based on the type of their internal moving element 185
 According to the nature of displacement 186
 According to their torque–speed characteristics 186
9.9 Semi-rotary Hydraulic Actuators 186
 Vane Type Semi-rotary Actuator 186
 Rack-&-Pinion Type Semi-rotary Actuator 187
 Helical Gear Type Semi-rotary Actuator 187
9.10 Hydraulic Motors .. 188
 Gear Motors ... 188
 External-gear Motor ... 188
 Gerotor/Geroler Motors ... 189
9.11 Vane Motor ... 190
9.12 Piston Motors ... 191
 Axial Piston Motors .. 191
 In-line Axial Piston Motor 192
 Bent-axis Axial Piston Motor 192
 Radial Piston Motors ... 193
9.13 Comparison of Hydraulic Motors 194
9.14 Performance Characteristics of Hydraulic Motors 194
 Torque-Speed Characteristic 195
 Pressure - Volumetric Efficiency Curves 195
 Torque and Flow Curves against Speed 196
9.15 Selection of Hydraulic Motors 196
9.16 Advantages and Disadvantages of Hydraulic Motors 196
9.17 Applications of Hydraulic motors 196
9.18 Hydrostatic Transmission (HST) 197
10.16 ‘4/3- Directional Control (DC) Hydraulic Valves’ 217
10.17 Centre Positions of 4/3-DC Valves ... 217
 Tandem-centre Position ... 218
 Closed-centre Position ... 219
 Open-centre Position .. 219
 Float-centre position .. 220
 Additional Center Positions .. 220
10.18 Higher Order DC Valves ... 222
10.19 Non-return Valves .. 222
10.20 Check Valve ... 223
10.21 Pilot-operated Check Valve .. 224
 Pilot Check Valve with Decompression Stage 225
 Pilot to Open Check Valve with Thermal Relief 225
 Check Valve with Pilot-to-Close 226
 Prefill Valve ... 226
 Valve Combinations with Check Valves 226
10.22 Typical Applications of Non-Return Valves 226
10.23 Load Holding Function ... 227
10.24 Hydraulic Shuttle Valve ... 230
 Applications of Shuttle Valves 230
10.25 Flow Rate Coefficient of Control Valves 231
10.26 ΔP Vs Q Characteristics of DC Valves 232
10.27 Specifications, Hydraulic DC Valves 233
10.28 Selection, Hydraulic Valves .. 233
10.29 Typical Multiple Actuator Hydraulic Circuits 233
 Alternate Control of Two Hydraulic Cylinders 233
 Synchronizing Circuits for Hydraulic Actuators 234
 Series Circuit .. 234
 Replenishing Circuit ... 235
 Synchronizing Circuit with Hydraulic Motor Flow Divider 236
10.30 Typical Hydraulic Motor Circuits ... 236
 Uni-directional rotation of a Hydraulic Motor 236
 Bi-directional rotation of a Hydraulic Motor 237
 Series Connection of Hydraulic Motors 237
 Parallel Connection of Hydraulic Motors 238
 Questions .. 239

11 Flow Control Valves and Control Circuits 244-264
11.1 Introduction .. 244
11.2 Concept of Flow Division .. 244
11.3 Types of Flow Control Valves .. 245
11.4 Typical Applications of Throttle Valves 246
11.5 Orifice Valve ... 246
11.6 Throttle valves ... 247
11.7 Throttle valves ... 247
11.8 Adjustable Throttle valves (Needle valves) 248
11.9 Adjustable Throttle Valve, Pressure-dependent 248
11.10 Compensated Flow Control Valves 249
11.11 Pressure-compensated Adjustable Throttle Valve 249
11.12 Temperature Compensation ... 250
11.13 Flow Rate through Throttle Valves 250
11.14 One-way Flow control valve ... 251
11.15 Speed Control of a Hydraulic Cylinder using One-way Flow
 Control Valve .. 252
 Meter-in Method .. 252
 Meter-out Method .. 253
 Bleed-Off or Bypass Flow Control Method 254
11.16 Other Variants of Flow Control Valves 254
11.17 Regenerative Circuits .. 255
11.18 Hydraulic Motor Speed Control Circuits 257
 Series Meter-in Speed Control ... 257
 Meter-out Bypass Speed Control .. 257
11.19 Flow Divider/Combiner .. 258
 Rotary Flow Divider/Combiner .. 258
 Sliding-Spool Flow Divider .. 258
 Basic Priority Valve ... 258
 Priority Valve with Built-in Relief 259
Questions .. 261

12 Pressure Control Valves and Circuits 265-284
12.1 Introduction ... 265
12.2 Symbolic Representation of a Basic Pressure Control Valve 265
12.3 Classification of Pressure Control Valves 266
 Pressure Relief Valve ... 266
 Pressure Reducing Valve .. 267
 Unloading Valve .. 267
 Sequence Valve ... 267
 Counterbalance Valve ... 267
 Brake Valve ... 267
12.4 Pressure Reducing Valves .. 267
12.5 Direct-acting Type Pressure Reducing Valve 267
12.6 Pilot-Operated Pressure-Reducing Valve 268
12.7 Unloading Valves .. 269
12.8 Applications of Unloading Valves 270
12.9 Two-pump Power Supply .. 271
12.10 Sequence Valves .. 273
12.11 Counterbalancing Overrunning Loads 276
12.12 Counterbalance Valve .. 277
12.13 Externally Piloted Counter-balance Valve 278
12.14 Brake Valves (Over-centre Valves) 279
12.15 Comparison of Pressure Control Valves 282
Questions .. 282

13 Hydraulic Accumulators and Circuits 285-307
13.1 Introduction ... 285
13.2 Shock Absorbing Function of Accumulators 285
13.3 Other Functions of Accumulators ... 286
 Pulsation Dampening ... 286
 Energy Storage and Release .. 287
 Cost Reduction .. 287
 Auxiliary Power Source .. 287
 Leak Compensation ... 287
13.4 Application Areas of Accumulators 288
13.5 Types of Accumulators ... 288
13.6 Accumulator Symbols .. 288
13.7 General Constructionsal Features of Accumulators 289
13.8 Weight-loaded Accumulator ... 290
13.9 Spring-loaded Accumulator ... 290
13.10 Gas-charged Accumulators ... 290
 Non-separator type Accumulator .. 291
 Separator type Accumulator .. 291
 Piston Accumulators .. 291
 Diaphragm Accumulators ... 291
 Bladder Accumulators ... 292
 Metal Bellows Accumulator .. 293
13.11 Accumulator Pre-charging .. 294
13.12 Safety Requirements of Hydraulic Accumulators 294
 Safety-and-Shut-off Block ... 294
13.13 Basic Circuits with Accumulators 295
13.14 Accumulator Sizing .. 298
13.15 Comparison of Accumulators ... 304
Questions ... 304
14 Hydraulic Seals .. 308-332
14.1 Introduction .. 308
14.2 Seal Materials ... 308
14.3 Polymerization and Polymers ... 308
 Amorphous & Crystalline Polymers 309
 Polymer Additives .. 309
 Properties of Polymers .. 309
 Physical Properties .. 310
 Thermal Properties ... 310
 Chemical Properties ... 310
14.4 Measurement of Hardness of Seal Materials 310
14.5 Terms and Definitions - Seals ... 311
 Gland ... 311
 Heel .. 311
 Elasticity ... 311
 Resilience ... 311
 Memory ... 311
 Elastomer ... 311
Elongation ... 311
Tensile Strength ... 311
Flex Resistance ... 311
Compression Set ... 311
Creep ... 311
Hardening .. 312
Extrusion & Nibbling .. 312
Extrusion Gap .. 312
Tear Resistance ... 312
Squeeze ... 312
Surface Finish ... 312
Metric Seals .. 312
The Coefficient of Friction ... 313

14.6 Factors affecting Seal Performance 313
Pressure .. 313
Temperature .. 313
Speed ... 313
Surface Finish .. 313
Hardness ... 313
Friction ... 314
Chemical Compatibility ... 314
Humidity ... 314
Exposure to Oxygen, Ozone and Sunlight 314
Aging ... 314

14.7 Requirements of seals 314
14.8 Selection of Seals ... 315
14.9 Seal Profiles ... 315
14.10 Classification of Hydraulic Seals 316
14.11 Seal Classification Based on Stress-conveying Pattern 316
Static Seals .. 317
Static Radial Seals .. 317
Static Axial (Face) Seals ... 317
14.12 Dynamic Seals ... 318
14.13 Classification Based on Seal Materials 318
Elastomer Group .. 318
Acrylonitrile/Butadiene (NBR) 318
Viton (Fluorocarbon Rubber) (FKM) 318
Silicon Rubber ... 319
Ethylene Propylene Rubber (EPR or EPDM) 319
Plastic Group .. 319
Polyurethane ... 319
Nylon ... 319
PTFE (Teflon) Group .. 319
Virgin PTFE .. 319
15% Glass-filled/60% Bronze-filled PTFE 320
14.14 Classification Based on Seal Shapes 320
O-ring ... 320
Quad rings (X-Rings) ... 321
T-Ring Seal ... 321
Lip Seal ... 321
Packing ... 321
Cup packing .. 322
V-packing (or Chevron packing) 322
U-Pack ... 322
Wiper Seals ... 322
Composite Seals ... 322

14.15 Classification based on applications in Hydraulic Cylinders 323
Static Seals .. 323
Piston Seals .. 324
Wear Ring ... 324
Rod Seals ... 324
Wiper (or scraper) .. 325
Backup Rings .. 325
Rod Boots ... 325
Cushion Seals .. 326

14.16 Rotary Hydraulic Seals ... 326
Rotary Lip Seal ... 327

14.17 Rotary Seal Considerations 328
Friction ... 328
Surface Finish ... 328
Shaft Speed .. 328
Heat Dissipation ... 328
Material Selection .. 328
Seal Lubrication ... 328

14.18 Hydraulic Seal Design Considerations ... 328
Seal Materials .. 328
P-V Limit ... 328
Rotation Speed ... 329
Seal Installation Factors .. 329
Gough-Joule effect .. 329
Question ... 330

15 Hydraulic Fluid Conductors and Fittings 333-351

15.1 Introduction .. 333
15.2 Classification of Fluid Conductors .. 333
15.3 Basic Requirements of Fluid Conductors .. 334
15.4 Terms and Definitions – Fluid Conductors .. 334
Inside Diameter ... 334
Outside diameter ... 334
Wall Thickness .. 334
Schedule Number .. 334
Flow Rating .. 335
Pressure Rating ... 335
Hoop Stress .. 335
Burst Pressure .. 336
Working Pressure ... 336
Minimum Bend Radius ... 337
Minimum Dynamic Bend Radius 337
Minimum Static Bend Radius 337
15.5 Conductor sizing ... 337
15.6 Pipes .. 338
 Pipe Size Specifications 339
 Advantages and Limitations of Piping 339
15.7 Pipe Fittings ... 339
 Thread Joints for Pipe .. 340
15.8 Tubing .. 341
 Specifications for Tubing 341
 Tubing Size ... 341
 Wall Thickness .. 341
 Pressure Rating of Tubing 342
 Minimum Bend Radius of Tubing 342
 Tube Bending Process ... 343
 Advantages of Tubing ... 343
15.9 Tube Fittings ... 343
 Flare Fittings .. 343
 Compression (flareless) Tube Fittings 343
15.10 Hose ... 344
 Construction of Hoses ... 344
 Inner Tubing .. 344
 Reinforcement Layer ... 344
 Protective Outer Layer 345
 Specification Parameters of Hydraulic Hoses 345
 Hose size .. 345
 Pressure Rating of Hoses 345
 Minimum Bend Radius of Hoses 346
 Types of Hose Motion .. 346
 Selection of Hose ... 346
 Applications of Hoses ... 347
 Standards of Hoses ... 347
15.11 Hose Fittings .. 347
 Quick Couplings .. 348
 Questions .. 348

16 Electro-hydraulic Systems 352-373
16.1 Introduction ... 352
16.2 Fundamentals ... 352
16.3 AC solenoids Vs DC Solenoids 353
16.4 Solenoid Valves ... 353
16.5 ‘3/2-way Single Solenoid Valve, Spring Return’ 353
16.6 ‘4/2-way Single Solenoid Valve, Spring Return’ 354
16.7 ‘4/2-way Double Solenoid Valve’ 355
16.8 Control Devices ... 355
16.9 Push-button Switch .. 355
16.10 Terminal Markings of Contacts 356
16.11 Pushbutton Station ... 356
16.12 Electro-magnetic Relay .. 358
16.13 Logic Controls, Electric 359
16.14 Memory Function ... 360
16.15 Latching circuit, Electric 360
16.16 Sensors ... 362
16.17 Limit Switch ... 362
16.18 Reed Switch ... 363
16.19 Proximity Sensors .. 364
 Inductive Proximity Sensor 364
 Capacitive Proximity Sensor 365
 Optical Proximity Sensors 365
16.20 Time-delay Relays .. 368
 On-delay Timer ... 368
 Off-delay Timer ... 369
Questions .. 371

17 Programmatic Logic Controllers (PLCs) 374-392
17.1 Introduction .. 374
17.2 Comparison of Relay-based Controls and PLC-based Controls... 375
17.3 What is A PLC? .. 375
17.4 PLCs Vs PCs .. 376
17.5 Structure of PLCs ... 376
17.6 Hardware Elements of a PLC 376
 CPU ... 377
 Memory Elements ... 377
 Load Memory .. 377
 Work Memory .. 378
 System Memory ... 378
 Input/Output (I/O) Modules 378
 Digital and Analog Modules 378
 Digital Input Module 378
 Digital Output Module 379
 Analog Input Module 379
 Analog Output Module 379
 Power Supply .. 380
17.7 Hardware Design of PLCs 380
17.8 Software Elements of A PLC 380
17.9 Hardware Configuration 381
17.10 User Programs .. 381
17.11 Program Scan-cycle 381
17.12 Ladder Programming in General 382
17.13 Bit logic Operations 382
 NO Contact, PLC .. 382
 NC Contact, PLC .. 383
 Coil, PLC .. 383
17.14 Timers, PLC .. 386
 On-delay Timer, PLC 386
19.12 Steady State Characteristics .. 415
 Gain .. 415
 Flow Curve of a Servo Valve .. 416
 Flow Gain of a Servo Valve .. 416
 Internal Leakage of a Servo Valve 417
 Pressure Drop across a Servo Valve 417
 Pressure Curve ... 417
 Pressure Gain .. 418
 Flow Vs Pressure Drop Curve 418
 Hysteresis in Servo Valves .. 418
 Threshold or Resolution ... 419
 Linearity and Symmetry ... 419
19.13 Transient (Dynamic) Characteristics 420
 Step Input .. 420
 Step Response .. 420
 First-Order System ... 421
 Second-Order System ... 422
 Sinusoidal Input (Frequency) Response 422
 Amplitude Ratio .. 423
 Phase Angle (lag) .. 423
19.14 Examples of Electro-hydraulic Servo Systems 424
 Electro-hydraulic Servo Positioning System 424
 Electro-hydraulic Velocity Servo System 424
 Electro-hydraulic Pressure/Force Servo System 425
19.15 Effect of Contamination on Servo Valves 426
19.16 Application of Servo Valves 426
19.17 Comparison of Proportional Valves and Servo Valves 426
Questions ... 427

20 Load Sensing Systems .. 430-442
20.1 Introduction .. 430
20.2 The Behaviour of Conventional Hydraulic Systems 430
 A Hydraulic System with a Fixed Displacement Pump 430
 A Hydraulic System with a Load Sensing Feature 431
20.3 A Typical Load Sensing (LS) System 436
 A Load sensing Variable-displacement pump 436
 Pump Compensator .. 437
20.4 The Operation of a Load Sensing System 437
 Initial Position ... 437
 Low Pressure Stand-by ... 437
 Load Sensing Mode .. 439
 High-pressure Stand-by Mode 439
20.5 Advantages of Load Sensing Systems 440
20.6 Applications of Load Sensing Systems 440
Questions ... 442
Speed and Speed Control ... 463

22.6 Classification of Work Operations 464

Move .. 464

Hold .. 464

Drilling .. 464

Turning .. 464

Milling ... 464

Forming .. 464

22.7 Design Considerations ... 464

22.8 General Design Principles .. 465

System analysis .. 465

Circuit Design ... 466

Sample Drawing for a Typical Industrial Hydraulic Circuit 466

Component Selection ... 466

Component sizing .. 467

Sizing of Hydraulic Cylinders ... 468

Sizing of Hydraulic Motors .. 470

Seals for Hydraulic Systems .. 470

Connecting Port for Hydraulic Component 470

Mounting Styles of Hydraulic Actuators 470

Total Flow Rate .. 470

Sizing of Hydraulic Pump and Drive Motor 471

Selection of Fluids .. 471

Determine Reservoir Size ... 471

Pressure Relief Valve Sizing ... 472

Control Valve Sizing ... 472

Determine Accumulator Capacity 473

Sizing Fluid Conductors .. 473

Selection of Filters .. 474

Determine the Right type of filters for a Hydraulic System 474

Determine the Required Filter Fineness 475

Determine the Required Filter Size 475

Selection of Fluid Coolers .. 475

22.9 Simulation and Analysis .. 475

22.10 Development of Prototype 475

22.11 Performance and Evaluation 475

Questions ... 484

23 Maintenance, Troubleshooting & Safety of Hydraulic Systems.. 486-506

23.1 Introduction .. 486

23.2 Classification of Maintenance 486

23.3 Definitions of Maintenance Activities 486

23.4 Requirements of Preventive Maintenance 487

23.5 Preventive Maintenance of Hydraulic Systems 488

23.6 Consequences of Poor Maintenance of Hydraulic Systems ... 488

23.7 Maintenance of Power Packs 489

23.8 Maintenance of Reservoirs ... 489

23.9 Maintenance of Hydraulic Pumps 489
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump Priming</td>
<td>489</td>
</tr>
<tr>
<td>23.10 Maintenance of Hydraulic fluids</td>
<td>490</td>
</tr>
<tr>
<td>General Maintenance Activities for Hydraulic Fluids</td>
<td>490</td>
</tr>
<tr>
<td>Monitoring Hydraulic Fluids in Service</td>
<td>490</td>
</tr>
<tr>
<td>Precautions while Handling Hydraulic Fluids</td>
<td>492</td>
</tr>
<tr>
<td>Typical Fluid Analysis Procedure</td>
<td>492</td>
</tr>
<tr>
<td>General Guidelines for Fluid Sampling</td>
<td>492</td>
</tr>
<tr>
<td>Procedure for Replacing Hydraulic Fluids</td>
<td>493</td>
</tr>
<tr>
<td>23.11 Maintenance of Hydraulic Filters/Strainers</td>
<td>493</td>
</tr>
<tr>
<td>23.12 Maintenance and Servicing of Hydraulic Valves</td>
<td>493</td>
</tr>
<tr>
<td>23.13 Maintenance of Hydraulic Cylinders</td>
<td>494</td>
</tr>
<tr>
<td>23.14 Maintenance of Hydraulic Motors</td>
<td>494</td>
</tr>
<tr>
<td>23.15 Maintenance of Hydraulic Accumulators</td>
<td>495</td>
</tr>
<tr>
<td>General Guidelines for Maintenance of Accumulators</td>
<td>495</td>
</tr>
<tr>
<td>Accumulator Installation</td>
<td>495</td>
</tr>
<tr>
<td>Accumulator Pre-charging Procedure</td>
<td>495</td>
</tr>
<tr>
<td>23.16 Maintenance of Hydraulic Seals</td>
<td>496</td>
</tr>
<tr>
<td>23.17 Installation, Routing & Maintenance of Fluid Conductors</td>
<td>497</td>
</tr>
<tr>
<td>Installation of Hydraulic Conductors</td>
<td>497</td>
</tr>
<tr>
<td>Hose Assembly Routing Tips</td>
<td>497</td>
</tr>
<tr>
<td>Maintenance of Hydraulic Conductors</td>
<td>498</td>
</tr>
<tr>
<td>23.18 Troubleshooting Hydraulics</td>
<td>498</td>
</tr>
<tr>
<td>General Troubleshooting Procedure</td>
<td>498</td>
</tr>
<tr>
<td>23.19 Safety in Hydraulic Systems</td>
<td>500</td>
</tr>
<tr>
<td>Tips for Safe Hydraulic Operation</td>
<td>500</td>
</tr>
<tr>
<td>23.20 General Malfunctions, Causes and Rectification</td>
<td>501</td>
</tr>
<tr>
<td>Questions</td>
<td>504</td>
</tr>
</tbody>
</table>

Appendix 1: Graphic Symbols for Hydraulic Components as per ISO 1209 507

Appendix 2: Graphic Symbols for Electrical Components 511

Appendix 3: A Unit Conversions – Metric to English 515
B Unit Conversions – English to Metric 516
C Psi to Bar and Bar to Psi Conversions 517
D Conversion Factors for Units of Pressure 517
E Viscosity Unit Conversions 518

Appendix 4: A Viscosity Grades and Viscosity Ranges as per ISO 3348 519
B Viscosity Comparison 520

Appendix 5: A Standards Organizations 521
B Important Standards for Hydraulic Systems 522

Appendix 6: A Hydraulic Fluid Additives and Elements 523
B Properties of Some Hydraulic Fluids 523
C Monograde and Multi-grade Hydraulic Fluids 524

Appendix 7: A Contamination Code Rating 525
B Recommended Fluid Cleanness Codes 526

Appendix 8: Mesh to Micron Conversion 527

Appendix 9: Indicative Specifications for Hydraulic Pumps 528
Appendix 10	A Theoretical Cylinder Forces .. 529
	(i) In the Metric Units ... 529
	(ii) In the English Units ... 530
Appendix 11	B Hydraulic Cylinder Standards 530
Appendix 12	A Pipe Specifications ... 532
	(i) General Specifications for Steel Pipes 532
	B Tubing Specifications ... 533
	(i) Size and Pressure Chart for Seamless Cold-drawn St 37.4 Tubing ... 533
	(ii) Size and Pressure Chart for Carbon Steel Tubing 534
	C Hose Specifications ... 535
	(i) Dash Numbers and Corresponding Hose IDs 535
	(ii) Hose Specifications in Metric and Inch Sizes 536
Appendix 13	D Standards Relevant to Hydraulic Fluid Conductors 536
	Troubleshooting Chart for Hydraulic Systems (Component-wise) ... 537
	Index ... 541
Chapter 1 Industrial Power Systems

LEARNING OBJECTIVES
Upon completing this chapter, you should be able to:

• Specify the necessary components of industrial power systems.
• Describe the power system and control system functions.
• Understand the meaning of mechanization and automation.
• Explain the term fluid power and its primary functions.
• Describe the function of an electrical power system.
• Describe the function of a pneumatic power system.
• Describe the function of a hydraulic power system.
• Differentiate the pneumatic and hydraulic systems.
• Appreciate the combined representation of power systems.
• Compare the electric, hydraulic and pneumatic power systems.

Introduction
Modern industrial production systems are designed to carry out a wide variety of work operations like clamping, moving, lifting, drilling, and turning. Moreover, several applications in mobile systems, aerospace, marine systems, and mining also involve various kinds of work activities. A prime mover provides the muscle power required for driving a load in a production machine. The prime mover is essentially an actuator that is part of a power transmission system consisting of a power source and a control system. Usually, the power source is not at the point where the work operation is to be carried out. The power must be conveyed to the machine’s point of work through the power (or energy) transmission system in a controlled manner. Figure 1.1 shows the basic components of a typical power transmission system. The following sections explain the function and types of power transmission systems.

Power Transmission Systems – Function & Types
The primary function of a power transmission system is to transmit power from its power source to connected loads in a controlled way. Apart from the mechanical means of power transmission, such as clutch pedals or gears, power can also be transmitted through an electron or air or oil medium. Accordingly, there are three main types of power transmission systems. They are (1) electrical, (2) pneumatic, and (3) hydraulic power transmission systems. Remember, pneumatic and hydraulic power systems are commonly categorized under the heading ‘fluid power systems’. A power transmission medium is, usually, modulated by a control system. The subsequent sections give the function, representation, and control options for each type of the power transmission systems. A combined representation of various power transmission systems is given in a subsequent section. A comparison of various power transmission systems is also given at the end of the chapter.
Electrical Power System

In the electrical power transmission system, power is transmitted through the medium of electrons flowing through a conductor to an electrical load (motor). The essential elements of the electrical power transmission system are the power source, control elements, and the load. Figure 1.2 depicts the electrical power transmission system. In this system, the power developing device is a generator. Control devices, such as pushbuttons, relays, contactors, timers, sensors, and pressure switches are used to modulate the power transmission medium. Finally, the electric motor converts the transmitted power into rotary mechanical power to perform some useful work. Linear motion can also be obtained from the rotary device, albeit in a cumbersome manner, by employing devices, such as rack-and-pins or belts. Electric motors are easy to control in small systems, and they can be the least expensive.

![Figure 1.2 | A block diagram showing the essential elements of an electrical power system.](image)

Fluid Power System

Fluid power involves the employment of a fluid medium, such as air or oil, in a controlled manner to get some useful work. Two specialized areas, namely pneumatics and hydraulics, cover the scope and definition of the term ‘fluid power’. The forces generated by the fluid power systems can be rapidly transmitted over some distance with small losses through a network of pipelines, hoses, and tubing. However, it may be noted that these two branches of the fluid power are fundamentally different in their behavior and performance. Fluid power systems offer many advantages, especially for systems that require high-speed linear motions or smooth position control or holding of heavy loads. They also eliminate the need for a complicated system of gears and levers. These systems help to build compact machines as compared to the case of employing purely electrical or mechanical means of power transmission. The fluid power can also be effectively combined with other technologies through solenoid valves, sensors, transducers, microprocessors, and PLCs. However, the fluid power systems suffer from some disadvantages, such as the contamination of their fluid medium and high cost.

Many applications of fluid power can be seen in our everyday lives. The fluid power is, in fact, the driving force in most industrial and mobile applications. A bulldozer or an excavator used for moving soil where a new project is being built, a chair with a lever for easily moving it up and down, a dentist drill for removing the cavity of a tooth, and the brake used in a car or a truck are examples where the fluid power can be used.

Pneumatic Power System: In a pneumatic power transmission, the energy contained in the pressurized air medium is transmitted through piping to a pneumatic actuator. ‘Pneumatics’ is the technological field pertaining to gaseous pressure and flow. Figure 1.3 shows the critical elements of the pneumatic system. It consists of (1) a power source, (2) control valves, and (3) actuators. In this system, a compressor is used as the power source to increase the pressure of a small volume of compressible air to the required level. Remember that the increase in the pressure of the pneumatic system takes place quite slowly. The slow response of the air compressor in developing the system pressure necessitates the storage of compressed air in a receiver tank. The energy that is stored in the receiver tank in the form of compressed air can, then, be transmitted in a controlled manner, through piping, to the pneumatic actuator to perform some useful work.
Two significant advantages of pneumatic systems are that (1) they can produce linear motion without any difficulty and (2) fast-acting systems can be developed using the high-speed pneumatic actuators. Speed control can also be achieved easily by using simple flow control valves. However, a pneumatic system is not suitable for providing a uniform motion. Operating pressures in pneumatics are much lower than that used in hydraulics for the main reason of economic prudence. As the pneumatic systems are designed as low-pressure systems, they are capable of generating only small magnitudes of forces economically. Therefore, the pneumatic systems are ideal for applications that involve small magnitudes of linear forces, but high-speed operations.

Hydraulic Power System: In a hydraulic power transmission, the energy is transmitted through the medium of pressurized fluid (oil) to a hydraulic actuator. ‘Hydraulics’ is the technological field pertaining to liquid pressure and flow. Figure 1.4 depicts the basic elements of a hydraulic system. It consists of (1) a power source, (2) control valves, and (3) actuators. In this system, a pump is used as the power source to create the flow and subsequently raise the pressure of the enclosed incompressible oil medium to the required level almost instantaneously. The hydraulic energy can, then, be transmitted through the pressurized oil medium, in a controlled manner, to the hydraulic actuator to perform some useful work.

Like the pneumatic system, the major advantage of the hydraulic power transmission system is that it can generate the linear motion readily through the primary actuator, cylinder. However, the operating pressures in hydraulics are much higher than that used in pneumatics. Therefore, the high-pressure hydraulic systems are capable of generating large magnitudes of forces economically, to drive heavy loads. The speed control of the actuator in the hydraulic system can also be achieved conveniently by regulating the flow rate of the oil medium to the actuator. Precise control of the speed of the actuator even at low values is another advantage of the system. Therefore, hydraulic systems are used in industrial and mobile applications that involve vast amounts of linear forces and the need for extremely accurate controls.

Control System Functions

A control system performs many control functions through its controller to govern or regulate industrial work processes. These control functions can be realized through either the open-loop control system or the closed-loop control system. Designers employ the open-loop control in every manual control system, where an operator is always present to initiate actions, such as when to start or when to stop the system. However, in the closed-loop control, as used in an automatic control system, the system controls itself by the feedback of its condition. Remember, the industrial work processes have evolved over a period. The following section explains the evolution of the industrial work processes.
Mechanization and Automation

Industrial work-processes have evolved from manual to mechanization to automation. In the mechanization of a work process, the mechanical work is taken over by a machine that provides the necessary working energy. Automation is the condition of a machine that is being controlled automatically either with limited human intervention or without human intervention at all. Accordingly, the automation can be categorized as either semi-automation or full (complete) automation. In the semi-automation, the machine automatically carries out several recurring steps in the processing of a workpiece through its processor. In this case, the presence of an operator is necessary to initiate every cycle of operations. In the complete automation, the machine takes over the entire work process automatically by means of ‘programmed’ commands to its processor. Automatic pilot devices, like sensors, thermostats, level switches, and pressure switches are invariably used in automation systems to provide information concerning the process variables to their processors.

Motion Control Systems

An important branch of modern automation systems is the motion control system. It is a system that controls the position, velocity, force or pressure associated with a machine. A motion control system uses some mechanical, electric, pneumatic, or hydraulic drives or a combination of these devices. A motion controller is the brain of the motion control system. It is responsible for calculating and generating the output commands for the desired motion path or trajectory. The motion control system is the complex part of robotics and modern CNC machines. It is also extensively used in the printing, packaging, textile, and semiconductor industries.

Combined Representation of Power Transmission Systems

The previous sections explained the functions of electrical, pneumatic and hydraulic power systems. A combined representation of these power systems is now given in Figure 1.5 for demonstrating the inter-relations among these systems. This representation helps the reader to get an overall idea of industrial power systems.

Figure 1.5 | A block diagram showing the combined representations of power transmission systems.
A typical power transmission system consists of a power section and a control section involving power and control signals respectively. The primary function of the control section is to process the control signals in the system through a controller and regulate or control the power section through a final control element. The final control element acts as the interface between the control part and the power part. The control signals can be electrical, electronic, pneumatic or hydraulic in nature, each of which may be in the analog or digital form. It may be noted that bold lines are used to show power signals and shaded lines are used to show control signals in the Figure.

Comparison of Different Power Transmission Systems

Choosing the right and efficient form of energy for the drive system in the industry is not an easy task. Its selection depends on various factors. Table 1.1 gives a comparison of different forms of energy medium based on some important criteria as mentioned.

Table 1.1	Comparison of different power transmission systems		
Criteria / Power system	**Electrical**	**Hydraulic**	**Pneumatic**
Energy production	Hydro, fossil-fuelled, nuclear	Pump, electrically-driven	Compressor, electrically-driven
Availability of energy transmission medium	Available everywhere	Obtaining and disposing of oil is costly	Air is freely available
Maximum distance for energy transmission	Large distance, even beyond 1000 km	Up to 100 m	Up to 1000 m
Cost of energy	Smallest	High	Highest
Speed control	Limited	Good, especially for slow speed range	Easy, but uniform rate of speed is difficult
Linear force	Using rotary to linear conversion devices - Lower forces, lower efficiency, and large size	Using cylinders - Large forces due to high pressure and the possibility of large strokes	Using cylinders - Limited forces due to low pressure, but capable of high-speed operation
Rotary force (Torque)	Using electric motors	Using hydraulic motors	Using air motors
Overloading	A serious problem	With a relief valve, loadable until standstill	Loadable until standstill
Sensitivity to variations in temperature	Insensitive	Sensitive	Relatively insensitive
Leakage	Lethal accident risk at high voltages	Loss of energy and environmental fouling	Loss of energy
Test your knowledge: #1.1

1. ______ is the most suitable power transmission system for designing a machine involving high-speed linear motions.

2. ________________ is the power transmission system where a push at one end of its stiff medium causes the corresponding amount of force to appear at the other end.

3. ___________ power system transmits power is a form of pressurized oil or air.

4. ____________ is the technique of controlling a machine without human intervention.

5. ___________ is the interface between the ‘power section’ and ‘control section’ of a power transmission system.

[Choose from: Automation, Electrical, Fluid, Final control element, Hydraulics, Mechatronics, Motion control, PLC, Pneumatics, Sensor]

Objective Type Questions

1. Large magnitude of linear forces can be obtained easily in:
 a. Mechanical power transmission systems.
 b. Electrical power transmission systems.
 c. Pneumatic power transmission systems.
 d. Hydraulic power transmission systems.

2. Which of the following power transmission systems does provide a fast-acting production system?
 a. Mechanical power transmission system.
 b. Electrical power transmission system.
 c. Pneumatic power transmission system.
 d. Hydraulic power transmission system.

3. Which of the following statements is incorrect?
 a. Pneumatic systems are overload-safe.
 b. Hydraulic systems are insensitive to variations in temperature.
 c. Pneumatic systems are capable of providing high-speed operation.
 d. Hydraulic energy can be transmitted economically typically up to 100 m.

4. Which of the following statements is correct?
 a. The electrical power system provides linear motions in an optimum manner.
 b. The pneumatic power system provides uniform motion of its actuators.
 c. The hydraulic power system is not suitable for getting rotary motions.
 d. A motion control system calculates and generates output commands for the desired trajectory of motion.

5. The function of a controller in a power system is to:
 a. Transmit power through the system.
 b. Regulate the pressure in the system.
 c. Govern the main power system through commands.
 d. Sense the output parameter of the system.
Questions
1. What is an industrial prime mover?
2. What are the essential components of industrial power transmission systems? Explain with a block diagram.
3. What is the primary function of power transmission systems?
4. What are the ways of transmitting power to industrial equipment?
5. State how energy transmissions take place in electrical, hydraulic and pneumatic systems.
6. What is a fluid power system? Explain briefly.
7. What are the main divisions of fluid power systems?
8. List some important basic functions performed by fluid power systems.
9. Give any two examples of how you would use fluid power in your everyday lives.
10. What is the major advantage of fluid power systems?
11. Fluid power systems have many drawbacks. Name any four of them.
12. List any four applications of fluid power systems.
13. List a few advantages of pneumatically-operated systems or machines.
14. List two applications of pneumatics with which you are familiar.
15. List two applications of oil hydraulics.
16. Force developed by a hydraulic cylinder is typically greater than that by a pneumatic cylinder of the same size. Give a reason.
17. Movement of hydraulic cylinders is smooth and steady as compared to pneumatic cylinders. Give a reason.
18. Describe some unique problems faced by fluid power systems.
19. Compare hydraulic and pneumatic systems?
20. Explain why you require ‘control systems’ in power transmission systems.
21. Briefly, describe the evolution of industrial work processes.
22. What do you understand by mechanization and automation?
23. Differentiate between ‘semi-automation’ and ‘complete automation’.
24. Explain the roles played by mechanization and automation in the evolution of industrial work processes.
25. Give one example each of ‘semi-automatic control’ and ‘fully automatic control’.
26. What is a motion control system? Explain briefly.
27. Mention three advantages of hydraulic systems as compared to other power systems?
28. Depict the most general parts of electrical energy transmission system with its block diagram and describe the primary function of each component.
29. Draw the essential blocks of pneumatic energy transmission system and explain.
30. Depict the most important elements of hydraulic energy transmission system with the help of a block diagram and describe the primary function of each element.
31. Compare electrical, hydraulic, and pneumatic power transmission systems in respect of the following parameters: (1) Maximum energy transmission distance, (2) Cost of energy production, (3) Linear force, and (4) Speed control.

References
Chapter 2 Introduction to Hydraulics

LEARNING OBJECTIVES
Upon completing this chapter, you should be able to:
- Define the term ‘hydraulics’.
- Explain the power transmission technique used in hydraulic systems.
- Understand the fundamental aspects of hydraulic fluids.
- Apply Pascal’s law for the analysis of hydraulic systems.
- Explain how pressure is generated in hydraulic systems.
- Explain how force is developed in hydraulic systems.
- Differentiate between laminar and turbulent flows.
- State the importance of the Reynolds number for marking the borderline between the laminar and turbulent flows.
- Understand the effect of viscosity on hydraulic fluids.
- State the importance of specifying the viscosity indices (VIs) of fluids.
- Describe the basic elements of a typical hydraulic system.
- Discuss the advantages and disadvantages of hydraulic power.
- Understand the importance of standardization.

Introduction
Hydraulics is the branch of engineering sciences concerned with the transmission of energy, using incompressible fluids, for performing some useful mechanical tasks. Hydraulic systems conventionally involve the generation of pressures and the development and control of the enormous amount of forces. The conventional hydraulics can well be integrated with electronics as well as cartridge valve technology for adapting to the demanding requirements of many modern-day applications. Hydraulic technology has now advanced into a full-grown branch of engineering sciences with the development of powerful pumps, smarter valves, and precise actuators. You may note that engineers built this technology around a number of fundamental laws and concepts. Further, this technology must conform to various national and international standards.

This chapter, with the systematic presentation of the basic ideas of mechanics, fluids, pressure, flow, and force, aims to help the reader lay a firm foundation for his/her hydraulic knowledge. This basic knowledge is necessary for the systematic understanding of the complex hydraulic components/systems described in the succeeding chapters. A typical hydraulic system is also described with a schematic diagram and its corresponding circuit diagram, more or less at the closing stages of the chapter. The advantages and disadvantages of hydraulic systems are also presented towards the end of the chapter.

In the field of hydraulics, there are two primary classes of systems based on the behaviour of their power transmission media. They are (1) hydrodynamics and (2) hydrostatics. The differentiating characteristics of these two systems are presented in the following section.

Hydrodynamics Vs Hydrostatics
Hydrodynamics stands for the study of liquids in motion with high flow rates, but with low pressures. It is concerned with such matters as friction and turbulence generated by the flow of liquids through pipes and water flowing through nozzles. For example, a water wheel, as shown in Figure 2.1(a), represents a hydrodynamic device where power is transmitted by the impact owing to the kinetic energy of a high-speed stream of liquid from an impeller directed against its vanes.

Hydrostatics stands for the study of fluids at rest. It involves topics on buoyancy and flotation, the study of pressure on dams and submerged devices, and the design and development of industrial...
and mobile hydraulic equipment. Hydrostatic systems usually operate through confined fluids under high pressures, but with low flow rates. The relative incompressibility of the fluids is a necessity in these systems. In the hydrostatic system, as illustrated in Figure 2.1(b), exerting a ‘push’ onto a confined incompressible fluid transmits power. The fluid must flow to cause the motion, but the flow is only secondary to the force output. You may observe that the power transmission takes place because the confined fluid is subjected to the pressure. Most of the industrial hydraulic machines in use today, work hydrostatically.

Hydraulics – Definition

The term hydraulics is derived from the Greek ‘hydruleikos’, meaning water flowing through a pipe. So, hydraulics may be defined, in a broad sense, as the science of transmitting force or motion or both through the medium of pressurized liquid to power or control machines. Study of hydraulics is all about knowing how to produce a definite pressure by using the force generated by a power source and the reverse process of how to develop and control a force to drive a load by using the pressure.

Advent of Oil Hydraulics

Initially, water was used as the medium of energy transfer in industrial hydraulic systems. Water has the main advantage of fire-resistance. However, it has many limiting features, such as low lubricity and narrow range of working temperatures. Further, it promotes the rusting and corrosion of the metal parts that are exposed to it. These limitations prevented the use of water as the energy transfer medium in hydraulic systems.

Therefore, system manufacturers were on the lookout for more appropriate types of fluids for hydraulic systems. Petroleum-based oils, developed in the late nineteenth century, were found to be highly incompressible and capable of operating at high pressures. Moreover, they were found to have suitable viscosity range, and good lubricating, corrosion-resistant, and heat-transfer properties. As the advantages of the petroleum oils were so overwhelming, system designers started using them for the industrial hydraulic systems. That marked the beginning of ‘Industrial Hydraulics’ or ‘Oil Hydraulics’.

The introduction of seal materials based on synthetic rubber enabled the widespread use of compatible mineral oils in a majority of modern hydraulic systems. The exceptions are applications where fire-resistance or biodegradability of the fluid is of paramount importance.

Basic Hydraulic Systems

A pump, as used in a hydraulic system, is required to provide the most important function of drawing the fluid from the system reservoir and then pushing it into the system. Any resistance encountered by the flow results in the development of pressure in the system. The resistance to flow develops due to a variety of reasons including the applied load on an actuator in the system. The high-pressure fluid for a hydraulic system can be provided under a constant-flow condition or a constant-pressure condition or under varying conditions of pressure and flow to match the applied load in the system as