ΜΗΔΕΙΣ ΑΓΕΩΜΕΤΡΗΤΟΣ ΕΙΣΙΤΩ

(Do not enter if you do not know geometry)
This book is addressed to students and professionals and it is aimed to cover as much as possible the wider region of topographic mapping as it has been evolved into a modern field called *geospatial information science and technology*. More emphasis is given to the use of scientific methods and tools that are materialised in algorithms and software and produce practical results. For this reason beyond the written material there is also a large number of educational and professional software\(^1\) programs written by the author to comprehend the individual methodologies which are developed. Target of this book is to provide the people who work in fields of applications of topographic mapping (environment, geology, geography, cartography, engineering, geotechnical, agriculture, forestry, etc.) a source of knowledge for the wider region so that to help them in facing relevant problems as well as in preparing contracts and specifications for such type of work assigned to professionals and evaluating such contracting results. This book is also aimed to be a reference of theory and practice for the professionals in Topographic Mapping.

The material is carried out by 11 chapters and two appendices as follows:

1. Introduction Background
2. Reference systems and Projections
3. Topographic instruments and Geometry of coordinates
4. Conventional construction of a topographic map
5. Design and reproduction of a thematic map
6. Digital Topographic mapping – GIS
7. Digital Terrain Models (DTM / DEM)
8. Topographic mapping with GPS
9. Topographic mapping with methods of Photogrammetry
10. Topographic mapping with methods of Remote Sensing
11. Topographic mapping with new technologies LIDAR, IFSAR

A. The method of Least Squares adjustment

B. Description of educational software accompanying the text.

This book applies a didactics method where with a relatively small effort someone can digest a quite large volume of simple or complicated material of knowledge at a desirable scientific depth within a relative short time interval. This book is roughly 750 pages and a conventional book with about same material could probably need more than 5000 pages. This didactics method is based on a series of educational software developed by the author (some of these modules can also be used for professional applications) and cover most crucial points on topographic mapping. The reader of this book has the opportunity to follow the scientific analysis of these crucial points, as well as, the process of converting then into algorithms similar to those used by professional software packages. At the same time it is available to the reader corresponding educational software (written by the author) which can immediately be used to verify the correctness of scientific analysis and in this way it is developed a self-confidence for the acquisition of

\(^1\) See last page of this volume for instructions to access the educational software files online mentioned in the book
knowledge, as well as, a powerful motive for further deepening on the scientific subject. This didactics approach is applied by the author since 1980 in his academic and professional career in USA and in Greece with excellent results. The objective that educated people must be “smarter than the machine” and not to treat the machine as a “black box” being “button pushers” has been achieved with relative success by adopting this didactics technique.

Desire of the author is the knowledge acquired by reading this book to be used correctly. For this aim is proposed ten foundation bases listed bellow which may contribute along this direction:

1. **Education** is the effort to develop a healthy thought to the virtuous person.
2. **Training** is the effort to develop a healthy thought to the virtuous person in a specific subject, for example, Topographic Mapping.
3. **Thought** is a composite of three states of human mind before it develops any action. These states are: logic, desire and anger. Thought determines all actions of a person and precedes to these actions. Any state of mind (joy, happiness, sorrow, imagination, etc.) is described by these three components.
4. **Healthy thought** is developed when there is an effort so that the logic state of a person’s mind balances the two other states which are the desire and the anger. If logic state does not balance desire and anger then there is a bias or human error. Balancing takes place within tolerance limits as defined by midway of virtue (within the boundaries of wrong / right).
5. **Healthy action** is the effort so that such action is shaped by a healthy thought and is virtuous.
6. **Virtue** is the effort so that the action of a person follows a midway path, which is found in midway between two extreme positions or badness. For example, thrifty is a virtue and is found in midway between stinginess and overspending. Virtue can be considered as "the effort to maximise the use of mind energy for constructive aims and minimise its use for destructive aims". Some times though, destructive actions are inevitable as for self defence.
7. **Virtuous person** is the one who tries to be virtuous, that is to say, the effort to maintain the midway of virtue. This definition is within human dimensions and allows to anybody at anytime (never is late) to be virtuous.
8. **Virtuous action** is the effort so that corresponding action follows the midway of virtue.
9. **Justice** is the top virtue and includes all virtues.
10. **Democracy** is the process to define the midway of virtue. Consequently, for defining the midway of virtue it is required a wider consensus of educated people with minimum bias or error.

Notice: The Aristotelian midway of virtue has a universal validity, for example, taking into consideration the orbit of the earth around the sun, one may observe that the earth will never follow exactly the same path and there is a midway where orbits of the earth must occur in order to have equilibrium. If the earth gets off such bounds towards the inside (negative error), then the earth may collide with the sun, if the earth gets off such bounds towards the outside (positive error), then the earth may get lost in space. This idea provides a substantial help to define precisely the boundaries of wrong and right.

3 Plato “The republic”
4 Aristotle “The Nikomachean Ethics”
To my wife Nini

and to my children

Nafsika, Nikolaos and Despina
TABLE OF CONTENTS

Chapter 1. Introduction History 2

1.1 General 2
1.2 Definitions 2
1.3 History 4

Chapter 2. Reference Systems - Projections 10

2.1 Introduction 10
 2.1.1 Single-dimensional reference system 11
 2.1.2 Two-dimensional reference system 11
 2.1.3 Three-dimensional reference system 13
2.2 Earth centered earth fixed coordinate system 15
 2.2.1 Shape and size of the Earth 15
 2.2.2 World reference system 17
 2.2.2.1 Transformation of geodetic X, Y, Z to geodetic φ, λ, h 18
 2.2.2.2 Transformation of geodetic φ, λ, h to geodetic X, Y, Z 19
 2.2.2.3 Topographic surface, geoid, ellipsoid 19
2.3 Local reference datum 23
 2.3.1 Transformation of coordinates from the world reference system to the local
 Datum and reversely (Molodensky transformation) 24
 2.3.1.1 Transformation from local ellipsoid to world WGS 84 24
 2.3.1.2 Transformation from world WGS 84 to local ellipsoid 25
2.4 Map projections 26
 2.4.1 Projections and distortions 26
 2.4.2 Projections – projection surfaces 27
 2.4.2.1 Transverse Mercator projection – computation of X, Y from φ, λ 30
 2.4.2.2 Transverse Mercator projection – computation of φ, λ from X, Y 32
 2.4.2.3 Universal Transverse Mercator projection - UTM 34
 2.4.2.4 The Greek reference system EGSA 87 35
2.5 Transformation of rectangular coordinates 37
 2.5.1 Transformation in two dimensions 37
 2.5.1.1 Conformal or similarity transformation 38
 2.5.1.2 Affine transformation 38
 2.5.1.3 Bilinear transformation 39
 2.5.2 Three dimensional transformation 40
2.6 BIBLIOGRAPHY 42
 2.6.1 Books - papers 42
 2.6.2 Web pages 42
2.7 Questions 43
Chapter 3. Topographic instruments and Coordinate Geometry - COGO

3.1 Introduction 46
3.2 Accuracy specification standards for topographic mapping 48
 3.2.1 Specifications for hydrographic surveys (Depth measuring) 50
3.3 General definitions 51
3.4 Topographic instruments 55
 3.4.1 The Compass 57
 3.4.2 The slope meter. 58
 3.4.3 The measuring tape 59
 3.4.4 Measuring a slope distance by step 61
 3.4.5 The theodolite 61
 3.4.6 The level instrument 63
 3.4.7 The total station 63
 3.4.8 The global positioning system (GPS) 64
3.5 Coordinate Geometry – CoGo 65
 3.5.1 The rectangular Cartesian coordinates 65
 3.5.1.1 Azimuth and distance, fundamental relations 66
 3.5.2 Traverse and mapping 68
 3.5.2.1 Computation and adjustment of traverses 70
 3.5.3 Area of a closed polygon 72
 3.5.4 Intersection 73
 3.5.5 Measurement and computation of elevation from vertical angle 75
 3.5.6 Measurement and computation of elevation from the slope 76
 3.5.7 Topographic mapping with stadia 77
 3.5.7.1 Reduction of stadia measurements 79
 3.5.8 Topographic mapping using a compass 83
 3.5.9 Computation of a leveling traverse 85
3.6 Bibliography 88
3.7 Questions, exercises 89
 3.7.1 Questions 89
 3.7.2 Exercises 90

Chapter 4. Conventional construction of a topographic map 92

4.1 Introduction 92
4.2 Existing maps and photographs 94
4.3 Drawing a map 95
 4.3.1 Preparation to draw a map 95
 4.3.2 Drawing of points 98
 4.3.3 Plotting of characteristics (features) 99
 4.3.4 Drawing contour lines 103
 4.3.5 Uses of topographic maps 105
 4.3.6 Hydrographic maps 107
 4.3.7 A complete example of conventional topographic mapping 108
 4.3.7.1. Adjustment and computation of traverse 110
Contents

4.3.7.2 Adjustment and computation of elevations of traverse
4.3.7.3. Computation of intersection
4.3.7.4. Computation of coordinates of remaining points
4.3.7.5. Check point D
4.3.7.6 Drawing the topographic map
4.3.7.7 Computation of areas
4.3.7.8. Computation of excavation volumes
4.3.7.9 Drawing of profiles
4.3.7.10 Road design
4.3.8 Integrated topographic maps
4.3.9 Layout (stakeout)

4.5 Questions and problems
4.5.1 Questions
4.5.2 Exercises

Chapter 5. Design and reproduction of thematic map

5.1. Introduction
5.2 Kinds of maps
5.3 Communication Systems
5.3.1. The eye - brain mechanism
5.4 Map design
5.4.1. Parameters influencing map design
5.4.1.1. The purpose of the map
5.4.1.2. The map scale
5.4.1.3. The map user
5.4.1.4. Method of reproduction
5.4.2. Cartographic data
5.4.2.1. Geospatial data
5.4.2.2. Distribution of geospatial data - Statistical surface
5.4.2.3. Collection of data and preparation of manuscript
5.4.2.4. Generalization of data
5.4.3. Graphic elements of map design
5.4.3.1. Clarity and reliability
5.4.3.2. Optical contrast
5.4.3.3. Balance
5.4.3.4. Picture and background
5.4.3.5. Hierarchical structure
5.4.3.6. Color and shade
5.4.3.7. Lettering
5.5 The symbols of the map
5.6. Map reproduction
5.6.1. Introduction
5.6.2. Methods of reproduction without using offset press
5.6.2.2. Photographic method
5.6.2.3. Method of photocopying 164
5.6.3. Method of reproduction with offset press 165
 5.6.3.1. Half tone process 165
 5.6.3.2. Reproduction by lithographic offset press 166
5.7. Examples of thematic maps 169
5.8 Bibliography 173
5.9. Questions and Exercises 174
 5.9.1 Questions 174
 5.9.2 Exercises 176

Chapter 6. Digital Topographic Mapping - GIS 178

6.1. Introduction 178
6.2. Current technological components 179
 6.2.1. Computer structure and functioning 182
6.3. Elements of digital mapping – data models 183
 6.3.1. Graphic information in a vector map 184
 6.3.2 Non graphic information of vector map 186
 6.3.3 Attributes of graphic information in a vector map 187
 6.3.4 Topology of vector map 188
 6.3.4.1 Example 1 189
 6.3.4.2 Example 2 191
 6.3.4.3 Geometry and topology of spatial objects 193
 6.3.4.4 Topological structure of data 194
 6.3.4.5 Topological relations between spatial objects 195
 6.3.5 Topology of raster map 196
 6.3.5.1 Topological characteristics of raster data 198
 6.3.6 Advantages and disadvantages of vector and raster model 199
 6.3.7 Models of thematic data 200
 6.3.8 Structure of statistical surface data 202
 6.3.9 Window of presentation of topographic data 204
6.4. Geographic Information Systems (GIS) 208
 6.4.1. Uses of GIS 211
 6.4.2. Input of geospatial data 214
 6.4.2.1 Digitization of analog maps 216
 6.4.2.2 Vector to raster conversion and reversely 218
 6.4.3 Spatial data bases (DB) 220
 6.4.3.1 Data base design 221
 6.4.3.2 Data base management system (DBMS) 222
 6.4.3.3 Hierarchical data base model 223
 6.4.3.4 Relational data base model 225
 6.4.3.5 Object oriented data base model 226
 6.4.4 Required functions of GIS software 229
6.5 GIS applications 230
 6.5.1 Map algebra 230
 6.5.2 Topographic mapping applications 232
6.5.3 Application in computerization of geographical space 233
6.6 Bibliography
6.6.1 Books and Journal articles 238
6.6.2 Internet web pages 241
6.7 Questions, problems
6.7.1 Questions 242
6.7.2 Problems - exercises 244

Chapter 7. Digital Terrain Models (DTM) 246

7.1 Introduction 246
7.2 DTM with triangulated irregular network (TIN) 249
7.3 DTM Creation using rectangular mesh (GRID) 252
7.3.1 GRID DTM from weighted mean of neighboring points 252
7.3.2. GRID DTM using finite elements 254
7.4 Uses of digital terrain models 256
7.4.1 Analytical determination of elevations from DTM 256
7.4.2 Analytical determination of contours from DTM 259
7.4.3 Perspective presentation of a digital terrain model 263
7.4.4 Slope, aspect and shading 273
7.4.4.1 Computation of Slope and Orientation (aspect) 273
7.4.4.2 Computation of Shade 277
7.4.5 DTM Applications in management of water resources 278
7.5 Bibliography 284
7.5.1 Books and Journal articles 284
7.6 Questions, problems
7.6.1 Questions 286
7.6.2 Problems - exercises 287

Chapter 8. Topographic Mapping and GPS 290

8.1 Introduction 290
8.2 Description of GPS system 292
8.2.1 Aim and objectives 292
8.2.2 GPS segments 293
8.2.2.1 The space segment 293
8.2.2.2 The control segment 295
8.2.2.3 The user segment 296
8.2.3 Services of GPS positioning 296
8.2.3.1 Precise Positioning Service (PPS) 296
8.2.3.2. Standard Positioning Service (SPS) 297
8.2.4 Positioning GPS signals 297
8.2.4.1 GPS data 299
8.2.4.2 GPS parameter < number of week > (WN) 301
8.2.4.2.1 Transformation of WN parameter to correct GPS WN 302
8.2.4.2.2 Other parameters of GPS WN 302
Chapter 9. Topographic mapping by photogrammetry

9.1 Preface

9.1.1. Introduction

9.2 Cartographic camera for aerial photography

9.2.1 Interior orientation

9.2.1.1 Laboratory calibration of lens distortion

9.2.1.2 Analytical model for lens distortion

9.3. Geometry of aerial photographs (A/F)

9.3.1 Geometry of a single A/F

9.3.1.1 The scale of an A/F

9.3.1.2 Relief displacement

9.3.2 Geometry stereo pair of photos

9.3.2.1 Alignment of a stereo pair of photographs along the flight line

9.4. Flight planning

9.4.1 Calculation of flight height

9.4.2 Flight Diagram

9.4.2.1 A Complete example of flight planning

9.4.3 Control points

9.4.4 Problems in flight planning - automation

9.5 Mathematical bases - Orientations

9.5.1 Introduction to analytical photogrammetry

9.5.2 Collinearity condition

9.5.2.1 Space resection and intersection, bundle adjustment

9.5.3 Coplanarity condition
9.5.4 Generalized polynomial condition 372

9.6 Exterior orientation 373
 9.6.1 Relative orientation 374
 9.6.1.1 Relative orientation of two overlapped images 375
 9.6.1.2 Relative orientation of a strip 377
 9.6.1.3 Relative orientation of a block with many strips 379
 9.6.1.4 Advantages of relative orientation 380
 9.6.2 Absolute orientation 380
 9.6.2.1 Three dimensional transformation of coordinates 381

9.7 Soft copy photogrammetry 383
 9.7.1 Design and operation of a soft copy photogrammetric instrument 384
 9.7.2 Photogrammetric process to create a map manuscript 386
 9.7.3 Example on photogrammetric production of map manuscript 388

9.8 Applications 396
 9.8.1 Topographic mapping 396

9.9 Terrestrial non conventional (close range) photogrammetry 399
 9.9.1 Applications non conventional photogrammetry 400
 9.9.1.1 Applications to dynamic objects 400
 9.9.1.2 Applications in medicine 405
 9.9.1.3 Applications on earth movements and deformations of structures 410
 9.9.1.4 Applications in archaeology, architecture, and monuments 412
 9.9.1.5 Other Applications 416
 9.9.1.6 Photogrammetry and laser scanner in archaeology and mapping of monuments of cultural heritage 417

9.10 Bibliography 420
 9.10.1 Scientific journals reports and textbooks 420
 9.10.2 Web pages 424

9.11 Questions and problems 425
 9.11.1 Questions 425
 9.11.2 Problems and exercises 427

Chapter 10. Topographic mapping by remote sensing 434

10.1. Introduction 434
 10.1.1 The image 436
 10.1.2 Image types and corresponding qualitative information 438
 10.1.3 Remote sensing methods 443
 10.1.4 Photointerpretation 448
 10.1.4.1 Basic rules of photointerpretation - generally 450
 10.1.4.2 Photointerpretation using shadows - problems 452
 10.1.4.3 Photointerpretation using tone and texture - problems 453
 10.1.4.4 Photointerpretation using patterns and relation to the environment 455

10.2 Electromagnetic radiation (EMR) 457
 10.2.1 Nature and attributes of EMR 459
 10.2.2 Radiation laws 463
 10.2.3 EMR measurements 466
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1.1</td>
<td>Basic principles of Lidar</td>
<td>583</td>
</tr>
<tr>
<td>11.1.1.1</td>
<td>The role of the inertial system</td>
<td>584</td>
</tr>
<tr>
<td>11.1.2</td>
<td>Topographic Lidar</td>
<td>587</td>
</tr>
<tr>
<td>11.1.2.1</td>
<td>System specifications</td>
<td>587</td>
</tr>
<tr>
<td>11.1.2.2</td>
<td>Lidar data applications</td>
<td>588</td>
</tr>
<tr>
<td>11.1.2.3</td>
<td>Disadvantages of Lidar</td>
<td>592</td>
</tr>
<tr>
<td>11.1.2.4</td>
<td>Data processing</td>
<td>592</td>
</tr>
<tr>
<td>11.1.3</td>
<td>Bathymetric Lidar</td>
<td>593</td>
</tr>
<tr>
<td>11.1.3.1</td>
<td>Operating principles</td>
<td>594</td>
</tr>
<tr>
<td>11.1.3.2</td>
<td>The way of operation</td>
<td>596</td>
</tr>
<tr>
<td>11.1.3.3</td>
<td>Restrictions</td>
<td>597</td>
</tr>
<tr>
<td>11.1.3.4</td>
<td>Existing systems</td>
<td>597</td>
</tr>
<tr>
<td>11.1.4</td>
<td>Simple and synthetic aperture Radar - interferometry</td>
<td>598</td>
</tr>
<tr>
<td>11.1.4.1</td>
<td>Radar basic principles</td>
<td>598</td>
</tr>
<tr>
<td>11.1.4.2</td>
<td>Radar of synthetic aperture interferometry (IfSAR)</td>
<td>605</td>
</tr>
<tr>
<td>11.2</td>
<td>Bibliography</td>
<td>614</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Bibliography about Lidar</td>
<td>614</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Bibliography about IfSAR</td>
<td>618</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Web pages in the internet</td>
<td>622</td>
</tr>
<tr>
<td>11.3</td>
<td>Questions</td>
<td>623</td>
</tr>
</tbody>
</table>

Appendix A. The method of least squares

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1</td>
<td>Covariances - Weights</td>
<td>629</td>
</tr>
<tr>
<td>A.2</td>
<td>Covariance of observations</td>
<td>629</td>
</tr>
<tr>
<td>A.3</td>
<td>Covariance propagation law</td>
<td>630</td>
</tr>
<tr>
<td>A.4</td>
<td>The Method of least squares</td>
<td>632</td>
</tr>
<tr>
<td>A.4.1</td>
<td>Computation of (\Sigma \Delta \Delta) and (\Sigma \nu)</td>
<td>634</td>
</tr>
<tr>
<td>A.5</td>
<td>Linearization of non linear functions</td>
<td>637</td>
</tr>
<tr>
<td>A.5.1</td>
<td>Iterative solution of systems of equations by Newton – Raphson Method</td>
<td>638</td>
</tr>
<tr>
<td>A.6</td>
<td>Least squares where the initial approximations for linearization are considered observations of known weight.</td>
<td>641</td>
</tr>
<tr>
<td>A.7</td>
<td>Least squares applications</td>
<td>643</td>
</tr>
<tr>
<td>A.7.1</td>
<td>Transformation of coordinates</td>
<td>643</td>
</tr>
<tr>
<td>A.7.1.1</td>
<td>Similarity transformation (conformal)</td>
<td>643</td>
</tr>
<tr>
<td>A.7.1.2</td>
<td>Affine transformation</td>
<td>644</td>
</tr>
<tr>
<td>A.7.1.3</td>
<td>Bilinear transformation</td>
<td>645</td>
</tr>
<tr>
<td>A.7.1.4</td>
<td>Similarity three dimensional transformation (conformal)</td>
<td>646</td>
</tr>
<tr>
<td>A.7.2</td>
<td>Coordinate geometry</td>
<td>648</td>
</tr>
<tr>
<td>A.7.2.1</td>
<td>Linearized observation equations of horizontal angles and horizontal distances</td>
<td>648</td>
</tr>
<tr>
<td>A.7.2.2</td>
<td>Linearized observation equations of vertical angles and slope distances</td>
<td>650</td>
</tr>
<tr>
<td>A.7.2.3</td>
<td>Statistical testing for the acceptance or not of a least squares adjustment</td>
<td>651</td>
</tr>
<tr>
<td>A.8</td>
<td>Bibliography</td>
<td>653</td>
</tr>
</tbody>
</table>
Appendix B. Description of computer programs accompanying the text

B.1 Introduction
B.2 General comments
 B.2.1 Program XyzToFL_Jnh.exe
 B.2.2 Program Molodensky_Jnh.exe
 B.2.3 Program TrMercator_Jnh.exe
 B.2.4 Program TwoDTrans_Jnh.exe
 B.2.5 Program Cogo_Jnh.exe
 B.2.6 Program Digi_Jnh.exe
 B.2.7 Program Carto_Jnh.exe
 B.2.8 Program Topo_Jnh.exe
 B.2.9 Program Contr_Jnh.exe
 B.2.10 Program Perspe_Jnh.exe
 B.2.11 Program ZeqFxy_Jnh.exe
 B.2.12 Program NavCalc_Jnh.exe
 B.2.13 Program FitPoly_Jnh.exe
 B.2.14-15-17 Program StrPtSelect_Jnh, Stereo_Jnh and StereoDTM_Jnh
 B.2.16 Program Impro_Jnh.exe
B.3 Bibliography

Alphabetical Index

About the Author
CHAPTER ONE

INTRODUCTION - HISTORY
Chapter 1

Introduction History

1.1 General

Topographic mapping of earth’s surface began when exploitation of such areas occurred. Population increase created the need for people to share exploitable areas for urban development, agriculture, forestry, rangelands, etc. In the beginning boundaries were placed around wider areas by isolated groups of people and later such boundaries were placed by families. Then those areas were subdivided to provide land to descendants of such families and so on which means that land parcels were becoming smaller after subdivision. Then restrictions were imposed for subdivisions and exploitation means to arrive in today’s situation where land planning and sustainable management determines land uses while cadastre makes a full description of shape size and attributes of public property. Topographic mapping is expanded beyond needs for exploitation of areas of earth’s surface and it constitutes the basis for management, analysis and development of geographical space. However, within the framework of development interventions on earth’s surface for construction of works such as: roads, public works, cities, communication networks, networks of energy, water and sewer networks, irrigation networks, etc., use topographic mapping as a basis for planning, design and execution of such works. Furthermore, analysis and management of geographical space especially for environmental management, geology, agriculture and forestry, also use as a basis topographic mapping.
1.2 Definitions

Today a parcel is considered as entity or object and it is defined by its geometrical structure such as: size, orientation, dimensions, etc., as well as, its attributes such as: its use, ownership, tax data, etc. Topographic mapping as a science mainly deals with collection of geometric data and monitoring of attributes of similar to a land parcel entities.

Topographic mapping is defined as: *Art, science and technology to locate points near the earth’s surface, to derive geometric structures from these points and to monitor a set of static and dynamic attributes associated with these structures.* This definition includes entities or objects which have a geometrical structure which is composed of points. It must be emphasized that a point is a generic element which is able to form basic and complex geometrical structures such as lines, polygons, areas, parcels, etc. A line, for example, is composed of a set of points ordered along the line and they form the line, the same happens to a surface, it is also composed of a set of points which form the surface. Topographic mapping virtually helps to define points near the earth’s surface which are necessary to map part of the earth’s surface or the entire surface of the earth.

Geodesy, on the other hand *is mainly occupied to define the size and shape of the earth* in order to create a reference surface for topographic mapping.
1.3 History

Topographic mapping, according to known historical evidence, existed in ancient Babylonia and the borders between neighboring properties were delineated with specifically shaped idols made of clay which were used as landmarks and were named “boundaries” and were worshiped and protected like gods. The importance of this protection and worship was to decrease disputes and conflicts that usually result from locomotion of property borders and so far it was not allowed to anybody to touch the boundary. In Figure 1.1 is given such a picture of a boundary monument from ancient Babylonia. This example also shows the importance of the “point” as a basic geometric entity (object) for topographic mapping.

Figure 1.1. Boundary (Kudurru of Melishihu) of ancient Babylonia which constitutes the basic geometric entity (object) in topographic mapping. Grey limestone (1202-1188 B.C.).

The original Kudurru was sculptured on stone and was kept within a temple while a replicated idol made of clay was given to the owner and consequently was precisely placed at property limits. Information sculptured on the boundary was dealing with decree of ownership and specific consequences which may result from any effort to alter such decree which is protected by gods.

Some of those consequences are as follows:

May all great gods whose names are written in this stone, will drive him in a great sadness. Sadness may hit himself and his decedents who may be accursed through the mouth of all people. The name of this stone is “the establishment of boundary forever”.

Figure 2. Map of the earth from ancient Babylonia about 1000 B.C.

The oldest map was found in Babylonia and is dated around 1000 B.C. and it is shown in Figure 1.2. Notice that this map shows the earth’s shape to be round.
Ancient Greeks had made significant progress in topographic mapping and geodesy with top geodesist being Eratosthenes, named father of geodesy, who measured with high precision the size of the earth. Eratosthenes (274 – 196 B. C.) measured with high precision the earth’s perimeter in a simple way as follows: As shown in Figure 1.4, at a given moment the observer watches the reflected idol of the sun in a well located in the city of Seine in Egypt. This means that at that moment the Zenith angle of the sun Z_1 was zero ($Z_1 = 0$).

![Figure 1.3](image1.jpg) Eratosthenes (274 – 196 B. C.) who is considered as being the father of geodesy.

At the same time the sun’s zenith angle was measured in Alexandria also city of Egypt which is located at a distance 5000 stadiums away (4878 stadiums with today’s measurements) from the city of Seine and it was found $Z_2 = 7^\circ 12'$.

![Figure 1.4](image2.jpg) The simple way Eratosthenes computed the earth’s perimeter.

Eratosthenes has also measured the angle between the earth’s axis and the plane of the earth’s orbit around the sun (ecliptic) and found to be $23^\circ 30'$ which is very close to today’s measurements $23^\circ 27'$. Beyond Eratosthenes impressive accuracy of measurements, there are many other ancient Greeks who contributed in various ways to topographic mapping. Some names will be mentioned in brief as follows:

Taking into consideration that the Attica stadium is 164 meters, then, the earth’s perimeter was computer by Eratosthenes and was found to be of 41,000,000 meters. If we take today’s measurements of same distance being 4878 stadiums, then the earth’s perimeter is computed as 40,000,000 meters. Taking an average radius of the earth as 6,367,444.5 meters which is adopted by WGS84 and used by GPS, then the earth’s perimeter is computed to be 40,000,7834 meters. This brings down the error from Eratosthenes observations to 7834 meters.