INTRODUCTORY
NUMERICAL ANALYSIS

Lecture Notes
by

Mircea Andrecut

Universal Publishers/UPUBLISH.COM
2000
Parkland, FL, USA

Introductory Numerical Analysis: Lecture Notes

Copyright © 2000 Mircea Andrecut
All rights reserved.

ISBN: 1-58112-757-X

Universal Publishers/uPUBLISH.com
USA e 2000

www .upublish.com/books/andrecut.htm

To my father and my son

Preface

The aim of this book is to provide a simple and useful introduction for the
fresh students into the vast field of numerical analysis. Like any other introductory
course on numerical analysis, this book contains the basic theory, which in the
present text refers to the following topics: linear equations, nonlinear equations,
eigensystems, interpolation, approximation of functions, numerical differentiation
and integration, stochastics, ordinary differential equations and partial differential
equations. Also, the text is restricted to twelve lectures and one appendix, covering
only one semester of teaching (2 hours/lecture and 2 hours/exam).

Because the students need to quickly understand why the numerical
methods correctly work, the proofs of theorems were shorted as possible, insisting
more on ideas than on a lot of algebra manipulation. The included examples are
presented with a minimum of complications, emphasizing the steps of the
algorithms.

The numerical methods described in this book are illustrated by computer
programs written in C. Our goal was to develop very simple programs which are
easily to read and understand by students. Also, the programs should run without
modification on any compiler that implements the ANSI C standard.

Because our intention was to easily produce screen input-output (using,
scanf and print£), in case of WINDOWS visual programming environments, like
Visual C++ (Microsoft) and Borland C++ Builder, the project should be console-
application. This will be not a problem for DOS and LINUX compilers.

If this material is used as a teaching aid in a class, I would appreciate if
under such circumstances, the instructor of such a class would send me a note at
the address below informing me if the material is useful. Also, I would appreciate
any suggestions or constructive criticism regarding the content of these lecture
notes.

Dr. M. Andrecut

Faculty of Physics,
“Babes-Bolyai” University,
Cluj-Napoca, 3400, Romania
e-mail: andrecut@phys.ubbcluj.ro

Lecture 1.

Lecture 2.

Lecture 3.

Lecture 4.

Lecture 5.

Lecture 6.

Lecture 7.

Lecture 8.

Lecture 9.

Lecture 10.

Lecture 11.

Lecture 12.

Appendix.

References

TABLE OF CONTENTS

Exact Methods For Linear Systems
Iterative Methods For Linear Systems
Scalar Nonlinear Equations

Systems of Nonlinear Equations
Eigensystems

Tridiagonal Systems

Polynomial Interpolation

Best Approximation of Functions
Numerical Differentiation and Integration
Stochastics

Ordinary Differential Equations
Partial Differential Equations

Some Theorems on Differentiable Functions

21

35

51

65

77

91

107

125

143

157

177

193

199

Lecture 1

Exact Methods for Linear Systems

Introduction

Let us consider the problem of solving the linear system of equations:
A-X=B.
Here, the raised dot denotes matrix product, A=[a;] is a N xN matrix with

det(4) =0, B=[b;] is the right-hand side written as a column vector, and

X =[x,] is the unknown vector:

a, ap cee Ay b, X,

ay Gy ... Oyy b, X,
A= , B= . X =

Ay Ayz .o Ayy by Xy

The formal solution of this linear system can be written as
X=4"B,

where A7' is the inverse of the matrix A. The inverse of a N x N matrix 4 is
defined to be a matrix A" such that

A-A"'=4"4=1,
where [=[6;] is the NxN identity matrix (5, =1 if i=j; 6, =0 if i+ j).
The square matrix A is invertible iff det(A4) # 0. The inverse is then unique and to

find 47" we can solve
A-(AH=1.

This corresponds to solving a linear system for N right-hand sides.
The exact methods for solving linear systems gives the exact solution (in
the absence of roundoffs) after a finite number of arithmetic and logical operations.

7

Gauss Elimination Method

Gauss elimination is the most frequently used exact method for solving
systems of linear equations.

Let us start with the simple example of three equations with three
unknowns:

a; 4p 4 X b,
Ay Ay Ay || Xy |=|b
a3 Az dsz | | X3 b,

On the assumption that a,, # 0, the first equation of the system is divided by q,, .
Then from each remaining equation we subtract the first equation multiplied by the
appropriate coefficient a; . As a result of these operations, the system takes the

form:
(1) (1) 1)
L ay agj X by
(1) (1) —_| M
0 ay ay||x|(=b"|
(1) (1) (1)
0 a3y ay X3 by
where
1 _ . _
a; _al.i/all J=123
1) _
b’ =b /an
a) =a;—auaf) =23, j=1,23
1) _ @
b’ =b —a,b’ =23

The first unknown was eliminated from all equations, except the first. Now, on the

assumption that a{) # 0 we divide the second equation by the coefficient al) and
eliminate the second unknown x, from the third equation, resulting

Ioay ai | [xn] |5
0 1 ay||x =5
0 0 a||x| |

where

@ _ O/ @D s _
a; —azj/a22 j=2,3,
(2) _ () / (1)
b” =b /azz

2 1 (2 . N :
a,;):al.(f)—afz)agj) i=2,3 j=2,3

B = b0 —a®b® =3

Finally, the third equation is divided by a!3 , which for a nonsingular matrix must

be nonzero a3’ # 0. The resulted equivalent system is

Uoah) ey | [x] |5
0 1 ai||x|=|b",

0 0 1 ||x| [bY

where b = b{” /a{? . The solution is obtained by backward substitution

Xy = b
_ (2 (2)
X, =b" —ayyx,

1 1 1
x =b" —(a)x, +alx;)
One can see that the final matrix 4 is upper-triangular with the elements on the
main diagonal equal to 1. As a bonus, the determinant of matrix 4 is given by

_ 1 _(2)
det(A4) = ayyay a5 .

Let us return to the general case of N equations with N unknowns. After
k elimination steps, we have to eliminate the unknown x, . The system is given by

1) [¢)] [¢)) 1) FAON
1 ap, ay A ay X b
(2) (2) (2) (2)
1 as; asin asy X, b,
k k _| ptk
1 alk) al) |- x |=| b0,
(k) (k) (k)
0 0 0 0 Apsipsr -oe Qpaan | | Sk e+1
k k k
0 0 0 a® asw | Lxv] [6Y)

where

(k) _
ay =1

0 =t [al | =kl N

B =B faft

) =0

0 =aV ~ gl Va® i j=k+1,.. N
bi(k) — bi(k_l) _ a;kk_l)bl(ck)

Finally, the equivalent system is reduced to the upper-triangular form

i (1) 1) [©) m]r T T 50]
1 ap, ay, Ay ay X, b
(2) (2) (2) (2)
1 ayy Ay ayy X, b,
(k) [(ORN = (k)
ey - Gy X |=| b
k+1 k+1
0 1 . I(chl]\2 Xiest b/EJrl :
0 0 0 0o .. 1] Lxv] |8y

Using the back substitution, the solution vector is obtained as follows
xy = b
N .
x, =b - Za,&f)xi, k=N-1,...,1
i=k+1
Obviously, the determinant of the matrix 4 is given by
det(A) = a,,aly) ...a,(vj,\\',") .

In order to avoid the effect of computational error corresponding to a
division by a possible zero diagonal element ai,’(‘) =0, we must use the Gaussian
method with pivoting.

The pivoting procedure consists in interchanging rows (partial pivoting) or
rows and columns (full pivoting) so as to put a particularly desirable element (the
pivot) in the diagonal position. In practice, the pivot corresponds to the largest (in
magnitude) available element.

10

Example
Apply the Gauss elimination method with partial pivoting to the following system:

1 2 1|]|x 0
1 0 2| |x,[=[1].
2 1 2| |x 2
e interchange (row 1) and (row 3);
2 1 2| |x 2
1 0 2||x,|=1
1 2 1| |x 0
o —(1/2)x(row 1)+ (row2);
o —(1/2)x(row 1)+ (row3);
2 1 2| |x 2
0 -1/2 1|-|x,|=| O
0 3/2 0| |x -1
e interchange (row 2) and (row 3);
(2 1 2] [x 2

0 32 0]|x|=-1
0 -1/2 1] [x 0

o (1/3)x(row2)+(row3);

2 1 2] [x 2
0 32 0]|x|=| -1
0 0 1]|x] [~13

e Backward substitution gives

X, 5/3
x, |=[-2/3].
X, -1/3

11

C program

Y R e

Gaussian Elimination and Pivoting
(Upper-Triangularization Followed by Back Substitution)

To find the solution of AX=B, by reducing the matrix A to
upper-triangular form and performing the back substitution.

#include<stdio.h>
#include<stdlib.h>
#include<math.h>

/* __
#define Nmax 20 // The maximum number of equations

2 —

void Gauss (int N, double a[] [Nmax+1]

{

int j, k, p, a, t; // Loop counters

int row[Nmax]; // Vector with row-numbers

double x[Nmax], sum, m; // Solution-vector

// Initialize the vector with row-numbers
for (j=1; j<=N; j++) row[j-11=3-1;
// Start upper-triangularization routine
for (p=1; p<=N-1; p++)
{
for (k=p+1l; k<=N; k++)
{
if (fabs(alrow[k-11]1[p-1]1)>fabs(alrow[p-11]1[p-11))
{
t=row[p-11;
row[p-l]=row[k-1]; rowl[k-1]=t;
}
}
if (alrow[p-11][p-11==0)
{
printf ("\n ERROR: the matrix is singular !");
exit (1) ;
}
for (k=p+l; k<=N; k++t)
{
m=a[row[k-1]1][p-1]/alrow[p-1]1][p-1];
for (g=p+1; g<=N+1; g++)
{
alrow[k-1]][g-1]-=m*a[row[p-1]][g-1];
}
}
}

// End of upper-triangularization routine

12

// Start the backward substitution routine
if(alrow[N-1]] [N-1]==0)
{
printf ("\n Error: the matrix is singular !");
exit (1) ;
}
x[N-1l]=a[row[N-1]][N]/a[row[N-1]][N-1];
for (k=N-1; k>=1; k--)
{
sum=0; for (g=k+1l; g<=N; g++) sumt=alrow[k-1]][g-1]*x[g-1];
x[k=-1]=(alrow[k=1]][N]-sum) /a[row[k-1]][k-11;
}
// End of the backward substitution routine
// Solution vector
for (k=1; k<=N; k++) al[k-1][N]=x[k-1];

) HF */
void main (void)

{

int J, k; // Loop counters

double a[Nmax] [Nmax+1]; // a=[A, B] in AX=B

int N; // Number of equations

// Start the main routine
// Initialize the augmented matrix a=[A, B]
printf ("\n Input the number of equations (N<&%d) = ", Nmax);
scanf ("%d", &N);
printf (" Enter elements of a=[A, B] row by row:\n");
for (k=1; k<=N; k++)
{
for (j=1; j<=N+1; J++)
{
printf (" Input al[%d][%d]1=", k, J):
scanf ("$1f", &alk-11[j-11);
}
}
Gauss (N, a);
printf ("\n Solution:");
for (k=1; k<=N; k++) printf("\n x[%d]=%1f", k, al[k-1]I[N]);

Remark
By convention, the first index of an element a; denotes its row, the second its

column. In mathematical notation indices take the values 7, j=1,2,...,N,ina C
notation the indices take values i, j=0,1,..., N —1.

13

Example
Solve the linear system 4- X = B, where

1 -2 -1 2 -
2 0 1 2
a=[A4,B]=
2 0 4 1
1 6 1 2 16
Solution:
x[1] = 1.000000
x[2] = 2.000000
x[3] = 1.000000
x[4] = 1.000000

LU Decomposition

A more efficient way for solving linear systems is the LU decomposition
method which implies a lower-upper factorization of the given matrix 4. In other
words, we seek to represent the matrix A as a product of two triangular matrices,
such that

A=L-U
with
Ly 0 0 Uy Up Uy
L= Ly Iy 0 LU= O Uy Uy
0 :
Iyi v, Ly 0 0 0 uyy

The LU decomposition can be used to solve the linear system
A-X=B=(L-U)-X=L-(U-X)=B
by first solving for the vector Y the linear system
L-Y=8B
and then solving

U-X=Y.

14

The auxiliary vector Y is computed by forward substitution:

1 i1 .
yi=b/h, yizl[bi_zlify.f]’ i=2,...,N.
i =

The solution vector X is then obtained by backward substitution in the same
manner as in the Gauss elimination method

Jj=i+l

1 ul)
Xy = yyfuny s X :u[yi_ Zu,jij, i=N-1,..,1.
The system L-U = 4 is equivalent to the following N equations
N
zlikuk/‘ =a;, i,j=1,..., N,
=l '

with N? + N unknowns Lyx» uy; (the diagonal being represented twice). In fact, it is

always possible to put /, =1, i=1,..., N . Also, due to the triangular structure of
L and U, the summation index £ will not run over the whole interval [1,..., N].
We have, in fact, the following equations:

i
Zlikuk/:aﬁ for i<,
k=1

J
Zl,-kukj =a; for i>j,
k=1

This leads to the following recursive procedure for computing /; , u; :

u;=ay;, j=1,..,N

il
u; =ay —Zliku,g- , i=2,...,N
k=1

Jj-1
I :1[% —ZI,.kukjj, i=j+1,...,N.
Uu .. Tl

7

15

As a consequence of the LU decomposition the determinant is calculated
very easily as following

det(A) =det(L-U) =det(L)-det(U) =u;; -ty = Upy -

Pivoting is also an important aspect of the LU algorithm because of the
division operation used in the above equations. Here, only a partial pivoting
(interchange of rows) can be implemented. It follows that practically we
decompose a rowwise permutation of A. Including the permutation matrix, the
original system is transformed like that

(P-4)-X=(L-U)-X=P-B.

Example
Apply the LU decomposition with pivoting to the following matrix:

-3 2 3 -1

e 4O _ 6 -2 -6 0 .
-9 4 10
12 -4 -13 -5
-
2 . (0)
e row= Nk Pivot = 4,7,
4_
(12 -4 -13 -5 4 1 12
° A(O new) — 6 -2 -6 0 row = 2 Z(l) — 1/2 @ —4
-9 4 10 ’ 30 -3/4(-13/
-3 2 3 -1 1 —1/4 -5
00 0 0 4
o AW = 4O0ren _ O - 00 12 52 , row = 2 , Pivot= A},
0 1 1/4 -3/4 3
0 1 —1/4 -9/4 1

0
° A(lnew) — 0
0
0

0
1
0
1

A(2new) :A(2)

0

1/4
1/2
~1/4

A(Z) — A(l new) _1(2) .u(Z)T —

, row =

0
3) Qnew) 1(3) . (3T 0
e AV =4 1" u =
0
0

Hence

—_ o O O

S = O O

S O = O

0 4 0
~3/4 3 1
/ row = 1@
5/2 2 0
-9/4 1 1
0 0 0 0
0 0 0 0
row
00 12 502
00 —1/2 -3/2
4 0 0
3 - 0 u® = 0
20 1|’ 1/2
1 -1 5/2
000 4
000 3
row =
000 2
00 1 1
P-A=L-U,
10 00 12 -4
-3/4 1 00 0 1
U=
/2 0 10 0 0
—-1/4 1 -1 1 0 0

17

-13

/4 -
1/2
0

-5
3/4
521

1

C program
/ K

LU Factorization with Pivoting

To find the solution of the linear system AX=B
by using the following steps:

- Find the matrices P, L, U that satisfy PA=LU, where

P is the permutation matrix

L is the lower-triangular matrix

U is the upper-triangular matrix
- Find the solution Y of the lower-triangular system LY=PB.
- Find the solution X of the upper-triangular system UX=Y.

The diagonal elements of L are all 1 (these values are not stored).
The coefficients of L and U overwrite the matrix A.

The solution is returned in the last column of augmented matrix
a=[A,B].

The determinant of matrix A is given in det variable.

__ */
#include<stdio.h>
#include<stdlib.h>
#include<math.h>

/* __ */
#define Nmax 20 // The maximum number of equations

/* ___ */

double LU factorization(int N, double a[] [Nmax+1])

{

int k, p, 9, J, t; // Loop counters

double y[Nmax], x[Nmax]; // Solution-vectors

int row[Nmax]; // Vector with row-numbers

double sum, d=1.0;

// Initialize the vector with row-numbers
for (j=1; Jj<=N; j++) row[j-1]=j-1;
// Start the LU factorization routine
for (p=1; p<=N-1; pt++)
{
for (k=p+l; k<=N; k++t)
{
if (fabs(a[row[k-1]1][p-1])>fabs(alrow[p-1]1][p-11))
{
d=-d;
t=row[p-11;
row[p-l]=row[k-1];
row[k-1]=t;
}

18

if (alrow[p-1]] [p-1]1==0)
{
printf ("ERROR: the matrix is singular !\n");
exit (1),
}
d=d*a[row[p-1]] [p-1];
for (k=p+1l; k<=N; k++)
{
alrowl[k-1]] [p-1]=alrow[k-1]][p-1]/alrow[p-1]1][p-1];
for (g=p+l; g<=N; gt++)
{
alrow[k-1]][g-1]-=al[row[k-1]] [p-1]*alrow[p-1]][g-1];
}
}
}
d=d*a[row[N-1]][N-1];
// Start the forward substitution routine
yl0]=alrow[0]][N];
for (k=2; k<=N; k++)
{
sum=0;
for (g=1; g<=k-1; g++) sumt+=a[row[k-1]1][g-1]1*y[g-1];
ylk-1]=a[row[k-1]] [N]-sum;
}
if(af[row[N-1]][N-1]==0)
{
printf ("ERROR: the matrix is singular !\n");
exit (1) ;
}
// Start the back substitution routine
x[N-1]=y[N-1]/a[row[N-1]][N-1];
for (k=N-1; k>=1; k--)
{
sum=0;
for (g=k+1l; g<=N; g++) sumt+=a[row[k-1]][g-1]1*x[g-1];
x[k-11=(y[k-1]-sum)/a[row[k-1]][k-1];
}
// Solution vector
for (k=0; k<N; k++) al[k][N]l=x[k];
return d;

/* __
void main (void)

{

int N, k, J: // N=number of equations

double a[Nmax] [Nmax+1]; // a=[A,B] in AX=B

double det; // det=det (&)

// Initialize the augmented matrix a=[A, B]

19

printf ("\n Input the number of equations (N<%d)=", Nmax);
scanf ("%d", &N);
printf (" Enter elements of a=[A,B] row by row:\n");
for (k=1; k<=N; k++)
{
for (j=1; J<=N+1; j++)
{
printf (" Input al%d]l[%d] =", k, J);
scanf ("$1f", s&alk-1]1[j-11);
}
}
det=LU_factorization (N, a);
printf ("\n Solution:");
for (k=1; k<=N; k++) printf("\n x[
printf ("\n det (A)=%1f", det);

oe

d] = s1f", k, alk-1][N]);

/* __ */
Example
Solve the linear system 4-X = B, where
1 -2 -1 2 -
2 0 1 2
a=[4,B]=
2 0 4 1
1 6 1 2 16
Solution:
%x[1] = 1.000000
x[2] = 2.000000
%x[3] = 1.000000
%x[4] = 1.000000
det (A) = 32.000000

20

Lecture 2

Iterative Methods for Linear Systems

The Method of Simple Iteration

The methods described so far are called exact methods. However, in the
exact methods the roundoff errors accumulate, and if the matrix 4 is near singular
the errors are amplified in an inconvenient way. In such cases one can use the
iterative methods to find an improved solution.

Let X be the exact solution of the linear system

A-X=B8B,
and let X' be some slightly wrong solution, such that
X =X'+6X .
Inserting this wrong solution in the linear system we find
A-X=4-(X-X")=B-4-X".

The right-hand side of this equation is known, since X' is the wrong solution, and
we can use it to compute 6X and therefore X . Now, we can interpret this equation
as an iterative formula

A X" - xy=B-4. XV k=0,1,2,..., XV =X",
used to improve the solution of the linear system.

A different approach is based on the replacement of the inverse of the

matrix 4 by an approximation Q¥ ~ 4™

and defining the residual matrix ® as
0=7-0"-4.
Here, I is the identity matrix. It follows that
A=A (@)) = (A (@))0y =@ Ay 0" =

=(1-0)"-0"=1+0+6"+...)-0".

21

Therefore, the inverse 4~ is given by

limQ™ =47, 0" =(1+0+...+0")-0".

n—oo

The solution vector is then given by the following iterative formulas

XM -—0".p,

X(n+1) — Q(O) .B+ (1 _Q(O) . A) . X(") — Q(O) .B+0O- X(") ,

with 0 ~ 47", Here, the most important problem is to establish the conditions
for the convergence of the limit lim Q™ = 4™". In order to do such analysis we
n—»00

need to introduce few concepts regarding the norm of vectors and matrices.

T
Let X =[x, x,,..., xy] € R", then some examples of vector norms are

N
HXH1 = Z‘xk‘ (the one norm),

k=1

N
|1x], = Zx,f (the two norm, or Euclidean length),
k=1

HXHOO = glka;)]s‘xk‘ (the infinity norm, or max norm).

The above norms are particular cases of
1
YooV
o, =| bl |-
k=1
Vector norms are required to satisfy:

|X[=0, VX eR" and [X]|=0< X =0;

H?LXH=WHX ,VXeR" and VAeR;

|x +Y|<|X]|+]Y]. v X, Y eRY.

22

One can easily prove that all of the examples given above satisfy these
requirements.

The natural norm of a square matrix A is defined in terms of a given
vector norm as following

Thus HAH measures the maximum relative stretching in a given vector norm that

occurs when multiplying all non-zero vectors X e R" by A. From the above
definition it immediately results that

J4-x] <4l Jx]. v x <R

Theorem
All matrix norm defined in terms of a given vector norm satisfy

® HAH 20, and HAH =0< 4=0 (zero matrix);

i) [ad|=[2]|4]. ¥ 2 <R;

(iif) |4+ 8]< 4]+ |B]-

() |4-B]<]4]-|2]-

Proof:
~ lc4+B)- x| |4-Xx+B-X|
(iii) HA+BH = max = max <
w0 |x| w0 |x]
< max HA'XHJ”HB'XH < max HAXH 4 max HBXH :HAHJFHBH
xo x| xo x| |x|

s ol Jdlpx]

(v) |4-8]=ma = |41

[l e x| e]

23

For specific choices of vector norm it is convenient to express the
corresponding induced matrix norm in terms of the elements of the matrix. For
example, in the case of the infinity norm we have

Zau J

N
maxz a,|x ‘
HAXHOO 1<1<N < 1<i<N = gi~J 3
B HXHOO 5T
N

me el

= —
S 2l
o0 /_

Also, for any square matrix A there is always a vector ¥ for which

l4-7], _ 5

==max) Ja,
P, ==
o0

Jj=1

To show this let & be the row of 4 for which Z‘akj‘ is maximum and take the

vector
3 - v B +1 if a, 2 0 o
e B ISR
It follows that
|4-¥], _
HYH 1<z<1v ’fy/‘_Z‘a’V‘

From the above considerations, clearly results that

‘AH = max Z‘ ‘ (maximum absolute row sum).
* 1<isN

Similarly one can show that

|4]|, = max Z‘aij‘ (maximum absolute column sum).
1< /<N

24

Example
Let us consider

12 -2
A=] 1 0 ,
-1 3 1

then

|4], =max{54,5=5 and |4], = max{3,56}=6.

Now, we need to introduce few concepts regarding the eigenvalues and the
eigenvectors of matrices. We shall consider how to compute the eigenvalues of
matrices in other lecture. For the present it is sufficient to know that if there are
non-zero vectors X; and scalars A, which together satisfy the equations

A-X,=AX;, i=1,..,N,
where A is a square N x N matrix, then the constants A, are called eigenvalues of

the matrix 4, and X, are the corresponding eigenvectors. The eigenvalues are
solutions of the characteristic equation

det(A—-AI)=0.
One can show that
.
HAHz_mXi’f HXHz _ggﬁ\/z’

where A,, i=1,..., N, are the eigenvalues of the matrix 4" - 4 (these eigenvalues

are indeed nonnegative because the matrix 4" - 4 is real and symmetric).

Theorem
For any matrix norm we have

>

p(4)<|4

where p(A4) is the modulus of the eigenvalue of greatest magnitude of a matrix A
(the spectral radius of matrix A).

25

