Dynamics and Transparency in Vowel Harmony

Stefan Benus
DEDICATION

To my wife Jana
and to my sons Matej and Samuel
ACKNOWLEDGEMENTS

My deep gratitude goes to all my committee members. First of all, I would like to thank my advisor, Diamandis Gafos. As a patient teacher and mentor, he showed me the beauty in pursuing crude intuitions and ideas as well as the importance of clarity in argumentation once these intuitions are ready to be fleshed out. His unrelenting willingness to read my drafts, search for ideas and arguments often deeply obscured in my unclear prose, and provide comprehensive comments, made a deep impact on my development as a linguist. Diamandis was instrumental in planting in me the seed of curiosity about vowel harmony and transparency and remained involved and extremely supportive at every step in the development of this project. I am grateful to Louis Goldstein who provided invaluable input in experimental data collection and analysis as well as in shaping my ideas about articulatory gestures and dynamics. He also made my experience in Haskins Laboratories a very fruitful and enjoyable one. Lisa Davidson became involved in the later stages of the project; yet, her willingness to listen to, discuss, and comment on various aspects of this dissertation had significantly improved the final product. I would also like to thank John Singler and Greg Guy for their objective and refreshing points of view.
At various stages of this project, I greatly benefited from discussions with and help from Khalil Iskarous, Marianne Pouplier, Arto Anttila, Mark Tiede, David Goldberg, Erika Sólyom, Anna Szabolcsi, Zsofia Zvolensky, Maryam Bakht-Rofheart, Jen Nycz, Larissa Chen, and Doug Honorof. This dissertation would not be possible without patience and endurance of my Hungarian subjects as well as those Hungarian speakers whom I consulted while preparing experimental stimuli. In addition, the faculty, staff, and my fellow students in the Linguistics department at NYU created a wonderful and stimulating environment where I never felt that I was on my own.

It would not have been possible to finish this work without the support from my wife and sons who endured extended periods of my absence (either physical, but more often when I was too preoccupied with my work to be fully present). Despite this, they continued to provide positive energy, understanding, and trust. In addition to my own family and friends in Slovakia who provided wonderful times for me and my sons during our summer visits, I wish to thank for the moral and material support of our extended family from the Holy Trinity Slovak Lutheran church in Manhattan. Specially, the Havlik and Prazenka families provided invaluable life support in the most difficult times when we were new to this country. My gratitude also extends to the Fulbright Commission in Slovakia for sponsoring the first year of my studies at
New York University. This work was supported in part by NIH Grant HD-01994 to Haskins Laboratories.
ABSTRACT

This dissertation examines the phonological patterning as well as phonetic characteristics of transparent vowels in Hungarian palatal vowel harmony. Traditionally, these vowels are assumed to be excluded from participating in harmony alternations. The experimental data presented in this dissertation run contrary to this assumption. The data show that transparent vowels in Hungarian are articulated differently depending on the harmonic domain in which they occur. Based on this observation, the central claim defended and formalized in this dissertation is that continuous phonetic details of all stem vowels including the transparent vowels are relevant for the phonological alternation in suffixes.

The dissertation proposes an integrated model that relates phonetic and phonological aspects of vowel harmony using the formal language of non-linear dynamic. The advantage of this approach is in its potential to capture both qualitative as well as quantitative aspects of the same pattern in a unified way. Crucially, a dynamic approach allows one to express both phonological and phonetic generalizations while maintaining the essential distinction between them. Hence, the dynamic approach provides a feasible research strategy in the quest for understanding one of the continuing challenges in the study of speech: the relation between
phonology – the mental or symbolic aspects of our speaking competence, and phonetics – continuous physical manifestations of this competence.

Applied to the particular case of transparency in Hungarian vowel harmony, the premise of interdependency between the phonetic properties of the stem vowels and the phonological patterns of suffix selection allows for an explanation of a broad range of data. Most importantly, it provides a motivation for the cross-linguistic generalizations related to transparent vowels in palatal vowel harmony systems. In addition, the effects of tongue body height, lip rounding, and surrounding vocalic context on the suffix selection in Hungarian receive a natural and lawful explanation.

To summarize, this dissertation presents novel experimental data from the production of transparent vowels in Hungarian. The proposed integrated model, relating phonetics and phonology using the formal language of non-linear dynamic, achieves a unified explanation of both the phonetic and phonological generalizations observed in the data and the literature.
TABLE OF CONTENTS

DEDICATION iii

ACKNOWLEDGMENTS iv

ABSTRACT vii

LIST OF FIGURES xiv

LIST OF TABLES xix

LIST OF APPENDICES xxii

CHAPTER 1
Introduction 1
 1.1. Claims 2
 1.2. Organization of the dissertation 10

CHAPTER 2
Phonology of transparent and opaque vowels: Theoretical background 14
 2.1. Introduction 14
 2.2. Transparency and opacity in Hungarian vowel harmony:
 phonological description 15
 2.2.1. Vowel harmony 15
 2.2.2. Hungarian palatal harmony 17
 2.3. The challenge of Hungarian vowel harmony 29
 2.3.1. Locality 29
 2.3.1.1. Strict locality 30
 2.3.1.2. Absence of locality 34
 2.3.1.3. Parameterized locality 37
2.3.2. The nature of transparent vowels
2.3.3. Exceptionality of hid-type stems
2.3.4. Vacillating stems
2.3.5. Multiple transparent vowels
2.4. Conclusion

CHAPTER 3
Hungarian transparent vowels: an experimental study
3.1. Introduction
3.2. Previous experimental studies involving transparent vowels
3.3. Articulatory experiment: Methodology
 3.3.1. Magnetometry and ultrasound techniques
 3.3.2. Stimuli and subjects
 3.3.3. Data collection
 3.3.4. Data labeling and extraction
 3.3.5. Comparison of the magnetometry and ultrasound techniques
3.4. Results
 3.4.1. Disyllabic stems – EMMA results
 3.4.1.1. Subject ZZ
 3.4.1.2. Subject BU
 3.4.1.3. Subject CK (pilot)
 3.4.1.4. Summary of disyllabic EMMA data: subjects ZZ, BU, and CK
 3.4.2. Disyllabic stems – Ultrasound results of subject ZZ
3.4.3. Monosyllabic stems – Results
3.5. Summary and discussion
 3.5.1. Harmonic environment
3.5.2. Vowel type 136
3.5.3. Lexical pair 139
3.5.4. Disyllabic vs. monosyllabic stems 140
3.6. Conclusion 144

CHAPTER 4
Phonetics meets phonology 147
4.1. Introduction 147
4.2. Articulatory retraction is relevant for suffix selection 149
4.3. Phonetic height and suffix selection 154
4.4. Perceptual results of coarticulation 160
4.5. Transparency and existing models of phonetics-phonology interface 163
4.5.1. Derivational model 164
4.5.2. Ohala’s perceptually-based model 165
4.5.3. Exemplar-based model 171
4.6. Vowel harmony and non-linearity between articulation and perception 178
4.6.1. Transparency: articulatory retraction without significant perceptual effect 179
4.6.2. Effect of lip rounding and tongue body lowering 187
4.7. Conclusion 197

CHAPTER 5
Dynamic model of vowel harmony in Hungarian 199
5.1. Introduction 199
5.2. Modeling and dynamics 201
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.1.</td>
<td>Why model?</td>
<td>201</td>
</tr>
<tr>
<td>5.2.2.</td>
<td>Why dynamics?</td>
<td>203</td>
</tr>
<tr>
<td>5.2.3.</td>
<td>Static vs. dynamic approach: example</td>
<td>206</td>
</tr>
<tr>
<td>5.2.4.</td>
<td>Geometric description of a dynamic system</td>
<td>211</td>
</tr>
<tr>
<td>5.3.</td>
<td>Gestural representations</td>
<td>223</td>
</tr>
<tr>
<td>5.4.</td>
<td>Stem-internal blending</td>
<td>236</td>
</tr>
<tr>
<td>5.4.1.</td>
<td>Assumptions</td>
<td>236</td>
</tr>
<tr>
<td>5.4.2.</td>
<td>Dynamic model of stem-internal blending</td>
<td>242</td>
</tr>
<tr>
<td>5.4.2.1.</td>
<td>Effect of front vowel rounding</td>
<td>247</td>
</tr>
<tr>
<td>5.4.2.2.</td>
<td>Effect of front vowel height</td>
<td>251</td>
</tr>
<tr>
<td>5.4.2.3.</td>
<td>Effect of front vowel advancement</td>
<td>255</td>
</tr>
<tr>
<td>5.5.</td>
<td>Model of suffix selection</td>
<td>259</td>
</tr>
<tr>
<td>5.6.</td>
<td>Summary and conclusion</td>
<td>272</td>
</tr>
</tbody>
</table>

CHAPTER 6
OT formalism of vowel harmony: Integrating OT and dynamics 274
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.</td>
<td>Introduction</td>
<td>274</td>
</tr>
<tr>
<td>6.2.</td>
<td>Optimality Theory</td>
<td>277</td>
</tr>
<tr>
<td>6.3.</td>
<td>Dynamic definition of OT constraints and their evaluation</td>
<td>280</td>
</tr>
<tr>
<td>6.4.</td>
<td>OT constraints for vowel harmony and their evaluation</td>
<td>286</td>
</tr>
<tr>
<td>6.4.1.</td>
<td>Markedness constraints: Agree</td>
<td>286</td>
</tr>
<tr>
<td>6.4.1.1.</td>
<td>Stem-internal harmony</td>
<td>286</td>
</tr>
<tr>
<td>6.4.1.2.</td>
<td>Stem-suffix harmony</td>
<td>291</td>
</tr>
<tr>
<td>6.4.2.</td>
<td>Faithfulness IDENT constraints</td>
<td>299</td>
</tr>
<tr>
<td>6.4.3.</td>
<td>Phonological categories and dynamic OT</td>
<td>309</td>
</tr>
<tr>
<td>6.4.4.</td>
<td>Summary of the developed OT tools</td>
<td>312</td>
</tr>
<tr>
<td>6.5.</td>
<td>OT analysis of Hungarian vowel harmony</td>
<td>313</td>
</tr>
</tbody>
</table>
6.5.1. Transparency 313
6.5.2. Opacity 323
6.5.3. Vacillation 330
6.5.4. Monosyllabic stems 333
6.6. Typological considerations 336
6.7. Summary of the OT model 340

CHAPTER 7 343
Conclusion 343
7.1. Future research 349

APPENDICES 353
BIBLIOGRAPHY 360
LIST OF FIGURES

Fig. 1	Continuous activation of TBCL = {uvular} in papír-nak	31
Fig. 2	Non-local relationship between the initial and final /a/	32
Fig. 3	An illustration of the plastic apparatus with transmitter coils and the placing of three receiver coils on the tongue	81
Fig. 4	Placements of the ultrasound probe	83
Fig. 5	Horizontal and vertical trajectories of articulators during the production of zafir-ban	92
Fig. 6	Tracings of the tongue surface at the extreme front position during the TV /i/ in buli-val	94
Fig. 7	Comparison of two curves as the difference in the area between them	96
Fig. 8	Illustration of the pair-wise comparison of the ultrasound curves	97
Fig. 9	Quantification of the effect of environment from the ultrasound images	99
Fig. 10	Retraction of /i/ and /e/ in back vs. front harmony	122
Fig. 11	Illustration of possible effects of retraction on the tongue body	138
Fig. 12	Tongue shapes of four transparent vowels in the #b_b# context from the ultrasound data of subject ZZ	157
Fig. 13 A sketch of the lexicon of exemplars of /i/ based on F2 values 173
Fig. 14 Non-linearity between articulation and perception 180
Fig. 15 Approximate mid-sagittal vocal tract configurations for non-
low unrounded vowels and the three-tube model of these
configurations 181
Fig. 16 Nomograms of the natural (formant) frequencies of the three-
tube model as a function of the length of the back cavity 182
Fig. 17 Energy distribution for the palatal vowels for an English
speaker and an Arabic speaker 185
Fig. 18 Non-linear relationship for front non-low unrounded vowels 186
Fig. 19 Ultrasound shapes of high front unrounded vowels and high
front rounded vowels in Hungarian 188
Fig. 20 Formant resonances for the unrounded front vowels and the
rounded ones 189
Fig. 21 Formant resonances for the spread, neutral, moderately
rounded, and closely rounded front vowels 191
Fig. 22 Illustration of the quantal differences between /i/ and /ü/ 192
Fig. 23 Quantal differences between unrounded and rounded front
vowels 194
Fig. 24 Illustration of the quantal differences between [i] and [ɛ] 197
Fig. 25 Static model of balance between demand and supply 207
Fig. 26 Dynamic model of balance between demand and supply 211
Fig. 27 Phase flow showing the velocity field of $f(x) = ax$ 212
Fig. 28 Velocity fields, flows, and potentials for a linear function
 $f(x) = ax + b$ 214
Fig. 29 Velocity fields, flows, and potentials for a non-linear function
 $f(x) = -x^3 + x$ 216
Fig. 30 Measure of stability as the width of the probability distribution 218
Fig. 31 Loss of stable fixed point due to continuous change in a control
 parameter 219
Fig. 32 Effect of changing parameters a,b on the shape of the potential
 function $V(x) = ax^4 + bx^2$ 220
Fig. 33 Non-linearity of the dynamical system characterized with the
 potential $V(x) = ax^4 + bx^2$ 222
Fig. 34 Tract variables of Articulatory Phonology 225
Fig. 35 Attractor dynamics for constriction location 227
Fig. 36 Potentials and probability distributions of the dynamic system
 $V(x) = \alpha(x - 2)^2 + F(t)$ as a variation of the weight α 229
Fig. 37 Kinematic trajectories of the lips and the tongue body
 movement and dynamic specifications that underlie them 231
Fig. 38 Dynamic formalism of [±back] vocalic feature
Fig. 39 Gestural descriptors with activation intervals and generated movement of the articulators
Fig. 40 Spatio-temporal evolution of two adjacent vowel gestures
Fig. 41 Blending of two gestures
Fig. 42 Model of blending of a transparent and an opaque vowel with a preceding back vowel
Fig. 43 Blending of a back and a front vowel gestures
Fig. 44 Modeling different retraction degree as a result of increased frontness of the front vowel
Fig. 45 Suffix form as a function of retraction degree
Fig. 46 Stem-internal blending in the BTT stems
Fig. 47 Potential for the CL value of the suffix vowel when retraction degree is 0.6
Fig. 48 Effect of preceding front suffix (x_0 = 2) on the target suffix vowel
Fig. 49 Illustration of a dynamic system defining the constraint *VOICE
Fig. 50 AGREEX-Suff(CL) – dynamic formalism and evaluation
Fig. 51 AGREEL-Suff(R) – dynamic formalism.
Fig. 52 Non-linearity between the horizontal position of the tongue (CL) and perceptual frontness 304

Fig. 53 IDENT(front) – dynamic formalism and evaluation 306

Fig. 54 Formalization of non-linearity between the horizontal position of the tongue (CL) and perceptual frontness 324

Fig. 55 Evaluation of candidates with CL = 1 by IDENT(front)[–round] and IDENT(front)[+round] 329

Fig. 56 Quantal properties of /i/, /ü/, and /e/ as differences in respective potentials defining the IDENT(front) constraint 331

Fig. 57 Transparency as an integrated system of phonetics and phonology 345
LIST OF TABLES

Table 1 Suffix selection for BT and BBT nouns 69
Table 2 Results from a 2-way ANOVA for environment and vowel
 type for subject ZZ 105
Table 3 Direction of the effect of environment for subject ZZ 105
Table 4 Effect of the type of the transparent vowel on the position
 of the receivers in the front and back environment for
 subject ZZ 107
Table 5 Retraction degree of individual transparent vowels 108
Table 6 Results from a 2-way ANOVA for environment and lexical
 pair for subject ZZ 110
Table 7 Effect of environment in individual lexical items for subject
 ZZ 112
Table 8 Results from a 2-way ANOVA for environment and vowel
 type for subject BU 113
Table 9 Direction of the effect of environment for subject BU 113
Table 10 Retraction degree of individual transparent vowels 114
Table 11 Results from a 2-way ANOVA for environment and lexical
 pair for subject BU 115
Table 12 Effect of environment in individual lexical items for subject BU

Table 13 Results from a two-way ANOVA for environment and vowel type for subject CK

Table 14 Direction of the effect of environment for subject CK

Table 15 Retraction degree of individual transparent vowels for subject CK

Table 16 Results from a 2-way ANOVA for environment and lexical pair for subject CK

Table 17 Effect of environment based on the area measure of difference between curves

Table 18 Mean area between the curves from the same environments and those from different environments

Table 19 Effect of environment in individual lexical items for subject BU

Table 20 Main effects of the environment, vowel type, and line on the D value

Table 21 Average difference in mm between the tongue shapes from the front and back environment
Table 22 Advancement of the transparent vowels in the front environment 129
Table 23 ANOVA results for the effect of environment in monosyllabic stems 131
Table 24 Effect of environment in individual lexical items for subjects ZZ and BU 132
Table 25 Effect of environment in individual lexical items for subject CK 133
Table 26 Effect of environment in monosyllabic stems based on the area measure of difference between curves 134
Table 27 Effect of environment measured on the five lines described in Fig. 9 135
Table 28 Comparison of retraction degree between disyllabic and monosyllabic stems 142
Table 29 Degree of retraction as a function of variation in quantal features (q) and input value of Constriction Location (CL) of the front gesture 257
LIST OF APPENDICES

APPENDIX A 353
List of stimuli for subjects ZZ and BU

APPENDIX B 355
List of stimuli for subject CK (pilot)

APPENDIX C 358
Post-hoc Tukey test: effect of vowel type on the tongue position in the front and back environments
CHAPTER 1

1.1 Introduction

In palatal vowel harmony systems such as those of Finnish, Hungarian, or Turkish, the [±back] quality of the suffix vowel is determined by the [±back] quality of the stem-vowel. For example, the dative suffix in Hungarian appears either with a front vowel /e/ or a back vowel /a/ depending on the stem vowel: ház-nak ‘house-Dative’ but kéz-nek ‘hand-Dative’. The stem vowel is thus considered a trigger and the suffix vowel a target of the phonological harmony process. The feature [±back] is called the harmonizing feature.

Polysyllabic stems in which vowels have opposite specifications for the harmonizing feature are called disharmonic stems. A particularly interesting question is what determines the form of the suffix following disharmonic stems or, in other words, which stem vowel is the trigger of the harmony process. To answer this question, vowels in disharmonic stems have been traditionally divided into two categories. Transparent vowels are those vowels that may intervene between the trigger and the target of harmony even when they bear the opposite value for the harmonizing feature. For example, the dative suffix following disyllabic stems such as papír ‘paper’ takes on the [+back] value of the initial vowel despite the [–back] quality of the intervening /i/: papír-nak ‘paper-Dative’. Opaque vowels, in contrast, require a local agreement relationship between the trigger and the target, i.e. there can
be no intervening vowel. For example, the dative suffix following a disyllabic stem in which a back vowel precedes a front rounded vowel, such as *parfűm* ‘perfume’, must bear the [−back] quality of the immediately adjacent preceding vowel: *parfűm-nek* ‘perfume-Dative’. Hence, transparent vowels allow a non-local relationship between the trigger and the target whereas the opaque vowels ban such a relationship. In Hungarian, the transparent vowels consist of the front unrounded vowels \{/i/, /í/, /é/, /e/\}, and the opaque vowels include all back vowels and the front rounded vowels \{/ő/, /ű/, /ö/, /ő/\}.

A traditional analysis of this widespread phenomenon is that the (\([±\text{back}]\)) form of the suffix is determined by the (\([±\text{back}]\)) form of the rightmost non-transparent vowel of the stem. In the case of stems like *papír*, the harmonizing feature [+back] of the initial vowel triggers the [+back] value of the target vowel in the suffix while the intervening [−back] vowel /i/ is disregarded in this process.

1.2 Claims

The approach taken in this dissertation follows from a belief that we can better understand cognitive processes related to speech if we carefully study both phonetic and phonological aspects of it. Following this approach, this dissertation adds to the large body of work on vowel harmony a proposal that both phonetic and phonological
properties of vowels are relevant in determining the output of the harmony process.

Specifically, there are three major claims in this dissertation:

1. Hungarian transparent vowels are not excluded from participating in palatal vowel harmony. Rather, the [±back] harmonizing feature is manifested on the transparent vowels by systematic phonetic differences in the horizontal position of the tongue body.

2. The phonological process of determining the discrete ([±back]) form of the suffix depends on the fine degree of articulatory backness in the vowel preceding the suffix vowel. Therefore, the form of the suffix is always determined by the backness of the rightmost stem vowel; in some cases, however, this backness is non-contrastive.

3. The relationship between continuous details of the tongue body horizontal position in stem-final vowels and the [±back] quality of the suffix vowel(s) can be coherently modeled using the mathematics of nonlinear dynamics operating over the parameters of gestural representations.

Evidence for the first claim is drawn from the experimental investigation of the articulatory characteristics of Hungarian transparent vowels. The combination of two techniques used in this dissertation (magnetometry and ultrasound) provides a comprehensive picture of the articulatory characteristics of these vowels. The findings show that the transparent vowels in stems triggering back harmony are