Deficit Irrigation for Wheat Cultivation
Under Limited Water Supply Condition

Md. Hossain Ali
Deficit Irrigation for Wheat Cultivation Under Limited Water Supply Condition

Copyright © 2008 Md. Hossain Ali
All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission from the publisher.

Dissertation.com
Boca Raton, Florida
USA • 2008

Deficit Irrigation for Wheat Cultivation
Under Limited Water Supply Condition

A Dissertation
Submitted to the
Bangladesh Agricultural University, Mymensingh
In Partial fulfillment of the Requirements for the Degree of
Doctor of Philosophy

By
Md. Hossain Ali

Department of Irrigation & Water Management
Bangladesh Agricultural University
Mymensingh

March, 2008
Declaration

I declare that, except where otherwise stated, this dissertation is entirely my own work and has not been submitted in any form to any other University for any degree.

Date: 11.03.2008 (Md. Hossain Ali)
Acknowledgements

The author would like to avail the opportunity to express his deepest sense of gratitude and profound respect to his supervisor, Dr. Md. Rafiqul Hoque, Professor, Department of Irrigation and Water Management, Bangladesh Agricultural University (BAU), Mymensingh, Bangladesh, for his support, direction, encouragement, valuable suggestions and constructive criticism, during the course of this study and preparing the manuscript.

The author is greatly indebted to his co-supervisor, Dr. A. A. Hassan, Chief Scientific Officer, and Head, Agricultural Engineering Division, Bangladesh Institute of Nuclear Agriculture (BINA); and member of the supervisory committee, Dr. M. A. Khair, Professor, Department of Irrigation and Water Management, BAU, for their valuable suggestions and critical review while preparing the manuscript.

Thanks are due to the authority of BINA for grant me the fellowship under ‘Research and Development Project, BINA’, funded by the Government of Bangladesh.

Sincere thanks are due to the staff members of Agricultural Engineering Division, Plant Physiology Division, and Soil Science Division of BINA, and BINA sub-station, Ishurdi, for their assistance and cooperation in various ways during the work.

The author would like to extend his thanks to all of the following: Mr. R. K. Dutta, Head, Crop Physiology Division, BINA, for his permission to use the laboratory facility; Dr. M. A. Sattar, Head, Soil Science Division, BINA, for his permission to use the Pressure Plate Apparatus; Dr. Md Ali Azam, Principal Scientific Officer, Plant Breeding Division, BINA, for his assistance in grain moisture content determination; A. K. M. Azad, Senior Scientific Officer (SSO) and former in-charge, BINA sub-station, Ishurdi and Dr. M. Badaruddin, SSO and present in-charge, BINA sub-station, Ishurdi, for their co-operation and assistance during the field work; Md. Rafiqul Islam, SO, Agronomy Division, BINA, to facilitate in using his Ice Box for carrying plant samples.

The author wishes to express his special appreciation and thanks to his family members for their support, understanding, and patient during the work.

The author
Biographical Sketch

The author was born on 31st December, 1966 in Jamalpur District, Bangladesh. He is the second son of Md. Abdur Rahim and Joygun Nesa. He passed his Secondary School Certificate (SSC) examination securing first division in 1982 from Battala High School, Jamalpur and Higher Secondary Certificate (HSC) examination securing first division in 1984 from Nandina College, Jamalpur, Bangladesh. He completed his B.Sc.Ag.Engg. (Hons) degree (securing first class, 5th position in merit) from ‘Bangladesh Agricultural University, Mymensingh, Bangladesh’ in 1988. He also completed his M.Sc.(Agril. Engg.) in Irrigation & Water Management from the same University in 1995. He did his M. Engg. Sci. degree from ‘The University of Melbourne, Australia’, in 1999. He joined at ‘Bangladesh Rural Electrification Board (REB)’ as Assistant General Manager (Member Service) in 1993. Later, he joined at ‘Bangladesh Institute of Nuclear Agriculture (BINA)’ in 1994, as Scientific Officer. He was promoted as Senior Scientific Officer in 2001. He has published 47 research papers in different national and international journals, one text book (Agricultural Meteorology, from Bangla Academy, Dhaka, Bangladesh, ISBN: 984-07-4586-7), and seven popular articles. He is member/life-member of several national /foreign professional societies.

The author is married to Anjumanara Begum and blessed with one daughter, Sanjida Afi ate, and one son, Irfan Sajid.

The author
Abstract

Vertical and horizontal expansion of irrigated agriculture to feed the increasing population has contributed to excessive groundwater withdrawal and affected the availability of water in terms of both quality and quantity. To sustain agricultural growth, strategic measures should be adopted to reduce water consumption while minimizing adverse effect on yield. The effect of deficit irrigation on wheat yield was studied in three consecutive years (2002-03 to 2004-05) in field and pot at the experimental farm of Bangladesh Institute of Nuclear Agriculture, Ishurdi, Bangladesh. Ten irrigation treatments were imposed in a randomized complete block (RCB) design covering full deficit, no deficit at all, single deficit at different stages, and alternate deficits. Water deficit was created by withholding irrigation at different growth stages. The results indicate that deficit irrigation strategies affected all aspects of plant growth (leaf area index, chlorophyll content, root growth, nutrient uptake, plant height) adversely. Yield attributes were affected by deficit irrigation treatments although they are not statistically significant in all cases. Differences in yield attributes among the partial deficits (i.e. single stage or alternate stage deficits) and no deficit treatments were small, but there was a sharp difference between partial or no deficit, and full deficit treatment. The grain and straw yields were significantly affected by treatments. Differences in grain and straw yield among the partial- and no-deficit treatments were small, and statistically insignificant in most cases. The greatest effect on yield was observed with the addition of first increment of water at CRI stage. Within all treatments, the well-irrigated treatment produced the highest grain yield. When compared within single-deficit treatments, the grain yield reduction was in the order to water deficit at phases: CRI> maximum tillering > booting – heading >flowering- soft dough. Within two deficit strategies, the treatment having alternate irrigation at CRI and booting –heading phase produced higher grain yield over the other one; and this treatment produced statistically similar yield to those of single-deficit and no-deficit treatments. This strategy showed the highest harvest ratio, indicating higher proportional accumulation of assimilates to grain. The crop coefficient (k_c) under different ET$_0$ methods for early, crop development, middle, and late period ranged from 0.54 to 0.96, 0.95 to 1.36, 1.2 to 1.62, and 0.68 to 1.05, respectively. The Penman-Monteith method resulted in relatively higher k_c value than those of other methods. Non-significant differences were observed by pair ‘t’ test between k_c values determined by various ET$_0$ methods. When the values were averaged over years and methods, a
kc value of 0.77, 1.17, 1.41, and 0.89 were found for early, crop development, middle and late period, respectively. The yield response factor (k_y) varied with the growth phase and also among seasons. On average, the k_y for early, maximum tillering, booting-heading, and flowering-soft dough stages was 0.27, 0.21, 0.25, and 0.17, respectively. The sensitivity index (λ_i, of Jensen model) for early, vegetative, booting-heading, and flowering-soft dough phases was 0.35, 0.22, 0.31, and 0.14, respectively. A more sensitive growth stage had a higher value of λ_i, and therefore water supply is more important at early and booting-heading phases. Deficit irrigation effectively boosted water productivity. On average, the single irrigation at early stage (T10) in addition to post-sowing irrigation saved about 68% water in comparison to well-irrigated plot (T9) with a yield reduction of 19%. Between two alternate deficit strategies, treatment having irrigation at early and booting-heading stages (T7) saved 39% water coupled with 16% yield reduction compared to well-irrigated plot. Marginal productivity of irrigation water associated with treatment T10 and T7 was about two folds of the others. Within the single deficit treatments (T3 to T6), relative water savings were almost similar (27 – 31%), but had differences in relative yield reduction (6 - 2%). The highest relative yield reduction was associated with deficit at CRI, followed by tillering, and then booting-heading stage. The highest net financial return from both land- and water-limiting condition was obtained from alternate deficit treatment (treatment T7). From the evaluation of yield, irrigation amount, irrigation water productivity, relative water savings, relative yield reduction, and maximum profit under limited water resource condition, it can be concluded that when limited quantities of water is available, preference should be given to irrigate first at CRI (if one irrigation is available), then at CRI and booting-heading (if two irrigations are available), and next at CRI, maximum tillering and booting-heading (if three irrigations are available) stages of growth.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>5</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>7</td>
</tr>
<tr>
<td>Biographical Sketch</td>
<td>9</td>
</tr>
<tr>
<td>Abstract</td>
<td>11</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>13</td>
</tr>
<tr>
<td>List of Figures</td>
<td>17</td>
</tr>
<tr>
<td>List of Tables</td>
<td>18</td>
</tr>
<tr>
<td>List of Appendices</td>
<td>20</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>21</td>
</tr>
<tr>
<td>List of Symbols</td>
<td>23</td>
</tr>
</tbody>
</table>

Chapter 1: Introduction

1.1 General concept of irrigation .. 25
 1.1.1 Irrigation scheduling ... 25
 1.1.2 Full irrigation .. 26
 1.1.3 Deficit irrigation .. 26
1.2 Water resources for irrigation in Bangladesh 28
 1.2.1 Cropping pattern and water requirement .. 29
 1.2.2 Consequences of excess withdrawal of groundwater in dry (winter) season .. 30
1.3 Crop diversification .. 31
1.4 Deficit irrigation of wheat ... 31
1.5 Statement of the problem ... 32
1.6 Aim and objectives of the study .. 33
1.7 Scope and relevance of the study .. 33
Chapter 2: Literature Review

2.1 Deficit irrigation
 A) Related work done in Bangladesh ...35
 B) Related work done outside Bangladesh ...40

2.2 Crop coefficient, K_c ..49

2.3 Yield response factor, K_y ..54

2.4 Economic evaluation for deficit irrigation ..57

2.5 Yield function/ model ..59

Chapter 3: Materials and Methods

3.1 Description of experimental site ...63

3.2 Wheat variety and irrigation treatment ..65

3.3 Crop culture ..66

3.4 Statistical analysis ..71

3.5 Soil moisture monitoring ...71

3.6 Plant growth and bio-chemical analysis ...72
 3.6.1 Leaf area index ...72
 3.6.2 Leaf chlorophyll content ...72
 3.6.3 Reducing sugar ...73

3.7 Determination of leaf water potential ... 73

3.8 Root study ..74
 3.8.1 Root sampling ...74
 3.8.2 Root length density ...74

3.9 Calculation of evapotranspiration ...75

3.10 Crop coefficient (K_c) ..77
 3.10.1 Estimating reference crop evapotranspiration (ET_0)78
 3.10.2 Expression of K_c ...81

3.11 Determination of yield response factor (K_y) ...81

3.12 Water productivity indices ..82
 3.12.1 Water productivity ..82
 3.12.2 Productivity of irrigation water ..82
3.12.3 Marginal productivity of irrigation water ...83
3.13 Economic analysis ...83
 3.13.1 Partial budget analysis ...83
 3.13.2 Full budget analysis ..84
3.14 Study of yield function/model ..85
 3.14.1 Determination of crop sensitivity factor for Jensen model85
 3.14.2 Comparison of yield reduction using CROPWAT model86

Chapter 4: Results and Discussion

4.1 Weather condition during the crop growing period ..87
4.2 Irrigation frequency and total irrigation water under different treatments91
4.3 Leaf water potential ...93
4.4 Physiological reactions to imposed water deficit ..94
 4.4.1 Leaf area index ...94
 4.4.2 Chlorophyll content of leaves ...96
 4.4.3 Reducing sugar ..98
 4.4.4 Root density and its distribution ..98
4.5 Soil moisture extraction ...99
4.6 Nutrient uptake ...102
4.7 Growth and yield attributes of field experiment ..103
4.8 Yield attributes and yield of pot experiment ...106
4.9 Responds of grain and straw yield ...107
4.10 Harvest ratio and Harvest index ...113
4.11 Yield and ET relationship ...115
4.12 Protein content of wheat grain ..118
4.13 Crop coefficient ...118
 4.13.1 Crop coefficient under well irrigated condition ..118
 4.13.2 Crop coefficient under deficit control ...124
 4.13.3 Crop coefficient for single-stage deficit ..126
4.14 Yield response factor ...129
 4.14.1 For individual growth period ..129
4.14.2 For whole growing period...132
4.15 Evaluation of yield model / function for deficit irrigation..134
 4.15.1 Sensitivity index of Jensen model...134
 4.15.2 Evaluation of other forms of equation ..135
4.16 Water productivity and productivity of irrigation water...137
4.17 Marginal productivity of irrigation water and relative water saving.......................142
4.18 Economic evaluation...142
 4.18.1 Economic evaluation under land-limiting condition...142
 4.18.2 Economic evaluation under water-limiting condition.................................145

Chapter 5: Summary, Conclusion, and Recommendation
 5.1 Summary..151
 5.2 Conclusion..155
 5.3 Recommendation for future research...157

References..159
Appendices...181
List of Figures

3.1 Location map of the experimental site...64
3.2 (a) Partial view of (i) Field plots, and (ii) pot experiment during 2004-0569
3.2 (b) View of the individual treatment plots at dough stage during 2004-0570
3.3 Schematic view of the root sampling area...75
4.1 Features of climatic elements during the growing seasons.................................88
4.2 Rainfall amount during the crop growing period..90
4.3 Pattern of (a) extra-terrestrial radiation, and (b) ET₀ (P-M method)
 throughout the growing periods..92
4.4 Yield and ET, and yield and irrigation water relationship.....................................117
4.5 Crop coefficient of well watered treatment as a function of DFS under
 different ET₀ methods..122
4.6 Crop coefficient of well watered treatment as a function of growing-
 degree-days (GDD) under different ET₀ methods..123
4.7 Crop coefficient for well watered treatment as a function growth stage124
4.8 Crop coefficients for deficit control as a function of DFS under
 different ET₀ methods..127
4.9 Relative yield decrease versus relative ET deficit for individual growth stages.....130
4.10 Relative yield decrease versus relative ET deficit for whole growth period........133
4.11 Pattern and mathematical relation between (a) ET vs. WP, and
 (b) IR vs WP, IWP...141
4.12 (a) Yield vs applied water, (b) Cost and revenue function under land
 limiting condition..146
4.13 Cost and revenue curve under water limiting condition.......................................149
List of Tables

3.1 Detail of irrigation treatments ..66
3.2 Calendar of operation of different cultural practices in different years ..68
4.1 Monthly average weather variables and ET₀ for the crop seasons and long-term average89
4.2 Number of irrigation and total water use under different treatments ...93
4.3 Leaf area index under different deficit treatments ..94
4.4 Chlorophyll content and reducing sugar of leaf during 2003-04 ...97
4.5 Chlorophyll content and reducing sugar of leaf during 2004-05 ...98
4.6 Component of ET under different treatments ..101
4.7 Nutrient retention in soil under different irrigation strategies ..103
4.8 Growth and yield attributes of wheat under different treatments ..105
4.9 Correlation matrix of yield and yield components ...106
4.10 Yield attributes and yield in pot experiment ...107
4.11 Grain and straw yield under different treatments ...109
4.12 Harvest ratio and harvest index under different treatments ...114
4.13 Irrigation amount and yield under different treatments ...115
4.14 Crop coefficient of wheat under different ET₀ methods in well irrigated treatments120
4.15 Crop coefficient of wheat in deficit treatment under different ET₀ methods125
4.16 Crop coefficient for single-stage deficit ..128
4.17 Yield response factor for different growth stages ...131
4.18 Sensitivity index (λ, of Jensen model) of wheat yield to water deficit at various growth stages ...135
4.19 Simulated yield with CROPWAT and observed yield reduction ...136
4.20 Water productivity and productivity of irrigation water under different treatments139
4.21 Average of water productivity and productivity of irrigation water under different treatments ..140
4.22 Average of relative yield reduction and irrigation water savings under different treatments143
4.23 (a) Partial budget analysis of wheat production without considering opportunity cost of irrigation water ... 144
(b) Full budget analysis without considering opportunity cost of irrigation water .. 143

4.24 (a) Partial budget analysis of wheat production considering opportunity cost of irrigation water .. 148
(b) Full budget analysis considering opportunity cost of irrigation water 149
List of Appendices

1.1 Long-term average of monthly total rainfall at two locations of Bangladesh181
1.2 Water requirement of rice and wheat ...182
1.3 Trend of area, production and productivity of wheat and boro rice183
3.1 Cost of wheat production under non-irrigated condition (full budget analysis)184
3.2 Operating cost under different deficit strategies when opportunity cost of irrigation is considered ..185
4.1 Estimation of extra-terrestrial radiation ...186
4.2 Leaf water potential of leaf before 3rd irrigation during 2002-03187
4.3 Root length density under different treatments during 2003-04188
4.4 Root length density under different treatments during 2004-05189
4.5 Soil moisture extraction pattern under different deficit strategies during 2002-03 ..190
4.6 Soil moisture extraction pattern under different deficit strategies during 2003-04 ..191
4.7 Soil moisture extraction pattern under different deficit strategies during 2004-05 ..192
4.8 Grain protein content under different treatments ..193
4.9 Crop coefficient of well irrigated treatment as a function of DFS with combined data of ET0 methods ...194
4.10 Crop coefficient of well irrigated treatment as a function of growing-degree-days (GDD) with combined data of ET0 methods ..195
4.11 Crop coefficient of deficit treatment as a function of DFS with combined data of ET0 methods ...196
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASM</td>
<td>Available soil moisture</td>
</tr>
<tr>
<td>BARI</td>
<td>Bangladesh Agricultural Research Institute</td>
</tr>
<tr>
<td>BINA</td>
<td>Bangladesh Institute of Nuclear Agriculture</td>
</tr>
<tr>
<td>CHU</td>
<td>Crop heat unit</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter</td>
</tr>
<tr>
<td>CRI</td>
<td>Crown root initiation</td>
</tr>
<tr>
<td>CSF</td>
<td>Crop susceptibility</td>
</tr>
<tr>
<td>CWR</td>
<td>Crop water requirement</td>
</tr>
<tr>
<td>DAS</td>
<td>Days after sowing</td>
</tr>
<tr>
<td>DF</td>
<td>Dilution factor</td>
</tr>
<tr>
<td>DMRT</td>
<td>Duncan’s new multiple range text</td>
</tr>
<tr>
<td>ET</td>
<td>Evapotranspiration</td>
</tr>
<tr>
<td>ETD</td>
<td>Cumulative evapotranspiration deficit</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agricultural Organization</td>
</tr>
<tr>
<td>FC</td>
<td>Field capacity</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>GDD</td>
<td>Growing degree days</td>
</tr>
<tr>
<td>HUE</td>
<td>Heat use efficiency</td>
</tr>
<tr>
<td>IW</td>
<td>Irrigation water</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>LAI</td>
<td>Leaf area index</td>
</tr>
<tr>
<td>LSD</td>
<td>Least significant difference</td>
</tr>
<tr>
<td>m</td>
<td>meter</td>
</tr>
<tr>
<td>ml</td>
<td>milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>millimeter</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>P-M</td>
<td>Penman-Monteith</td>
</tr>
<tr>
<td>PTU</td>
<td>Photothermal unit</td>
</tr>
<tr>
<td>RCB</td>
<td>Randomized complete block</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>RLD</td>
<td>Root length density</td>
</tr>
<tr>
<td>TSM</td>
<td>Total profile soil moisture</td>
</tr>
<tr>
<td>UNESCO</td>
<td>United Nations education, science and cultural organizations</td>
</tr>
<tr>
<td>vol.</td>
<td>Volume</td>
</tr>
<tr>
<td>WP</td>
<td>Wilting point</td>
</tr>
<tr>
<td>WUE</td>
<td>Water use efficiency</td>
</tr>
</tbody>
</table>
List of Symbols

°C Centigrade temperature
A_{645} Absorbance at 645 nm wave length
A_{663} Absorbance at 663 nm wave length
cm/hr Centimeter per hour
c_p Specific heat of air
E_0 Evaporation of a free water surface
E_{ET} Water productivity
E_{ir} Productivity of irrigation water
ET_0 Reference evapotranspiration
ET_a Actual crop evapotranspiration
ET_c Crop evapotranspiration
ET_m Maximum evapotranspiration
gm/cc Gram per cubic centimeter
ha Hectare
IW/CPE Ratio of irrigation water to cumulative evapotranspiration
K Potassium
k_c Crop coefficient
K_y Yield response factor
kg/ha Kilogram per hectare
$kg/ha/day$ Kilogram per hectare per day
kg/m^3 Kilogram per cubic meter
kPa Kilo Pascal
log Logarithm to the base 10
m/sec Meter per second
m^3/m^3 Cubic meter per cubic meter
mg/gm Milligram per gram
MP_{ir} Marginam productivity of irrigation water
N Nitrogen
P Phosphorus
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>p^H</td>
<td>Soil reaction indication</td>
</tr>
<tr>
<td>R^2</td>
<td>Coefficient of determination</td>
</tr>
<tr>
<td>R_a</td>
<td>Extra-terrestrial radiation</td>
</tr>
<tr>
<td>R_s</td>
<td>Global radiation</td>
</tr>
<tr>
<td>Sm^{-1}</td>
<td>Second per meter</td>
</tr>
<tr>
<td>t/ha</td>
<td>Metric ton per hectare</td>
</tr>
<tr>
<td>TB</td>
<td>Base temperature</td>
</tr>
<tr>
<td>T_{max}</td>
<td>Maximum temperature</td>
</tr>
<tr>
<td>T_{mean}</td>
<td>Mean temperature</td>
</tr>
<tr>
<td>T_{min}</td>
<td>Minimum temperature</td>
</tr>
<tr>
<td>v/v</td>
<td>Ratio of volume to volume</td>
</tr>
<tr>
<td>Wm^{-2}</td>
<td>Weiber per square meter</td>
</tr>
<tr>
<td>Y</td>
<td>Crop yield</td>
</tr>
<tr>
<td>Y_a</td>
<td>Actual yield</td>
</tr>
<tr>
<td>Y_{max}</td>
<td>Maximum yield</td>
</tr>
<tr>
<td>Zn</td>
<td>Zinc</td>
</tr>
<tr>
<td>θ_i</td>
<td>Soil moisture content at ith layer</td>
</tr>
<tr>
<td>λ</td>
<td>Sensitivity index of crop to water stress</td>
</tr>
<tr>
<td>Π</td>
<td>Multiplication</td>
</tr>
<tr>
<td>ψ</td>
<td>Leaf water potential</td>
</tr>
</tbody>
</table>
Chapter I

Introduction

1.1 General concept of irrigation

Plants need water for its proper growth and development. The demand for water by the crop must be met by the water in the soil, via the root system. Application of water to meet the crop water demand at proper time in proper way is termed as irrigation. If the crop water demand is meet by other ways (such as rainfall, capillary rise from groundwater table, etc.), there is no need of irrigation. Irrigation water requirement for cereals and non-cereals are not same. Among cereals, irrigation water requirement of rice is the highest. On the contrary, irrigation requirement of wheat is less compared to rice. Proper irrigation scheduling also affects the irrigation requirement of different crops.

1.1.1 Irrigation scheduling

The problem of irrigation scheduling consists of: (i) when to irrigate, (ii) how much to irrigate, and (iii) how to apply irrigation water. The amount of irrigation is obtained through field measurement or predicted through indirect method. The amount of irrigation is defined as the depth of water needed to meet the crop water loss through evapotranspiration under the growing environment. Although both timing and amount of water applied affect irrigation water productivity, timing has the greatest effect on crop yield and quality because at some growth stages, excessive soil moisture stress caused by delayed irrigation can irreversibly reduce the potential yield or quality or both. Different