An Investigation of the Mechanism of PAX7 Mediated Oncogenesis via In Silico and In Vitro Biology

Maika Graceina Mitchell

DISSERTATION.COM

Boca Raton
An Investigation of the Mechanism of PAX7 Mediated Oncogenesis via In Silico and In Vitro Biology

Maika Graceina Mitchell

This proposal is presented in fulfillment of the requirements for the degree of

Doctor of Philosophy (Interdisciplinary Studies)

Faculty of Computing, Health and Science

Edith Cowan University

December 2006

Committee:
Melanie Ziman, Ph.D., Supervisor
Diane Tabarini, Ph.D. Co-Supervisor
ABSTRACT

The *Pax* gene family appears to have evolved by a combination of gene duplication and/or genome duplication events over a long period of evolutionary time. The highly conserved paired box sequence within the *Pax* genes encodes a paired DNA binding domain, indicating that the *Pax* proteins are transcription factors which bind and regulate downstream target genes. Nine *Pax* genes (*Pax1 - Pax9*) listed in the National Center for Biotechnology Information (NCBI) database, contain this motif.

Some members of the *Pax* family, which includes *Pax3* and *Pax7*, encode a second DNA binding domain of the paired-type homeodomain (HD) class. *Pax3* and *Pax7* are closely related paired box family members specifically expressed in the dorsal neural tube and the developing somites and in proliferating and migrating neural crest cells where they are implicated in early neural and myogenic development, and are required for development of specific myogenic, neurogenic and neural crest cell lineages. *Pax3* and *Pax7* genes are also found aberrantly expressed in tumors arising from these cell lineages.

The aim of the research was to analyze the molecular mechanism or mechanisms of *PAX7* mediated oncogenesis. This was achieved by:

Systematic searches for *cis* conserved sequences within *PAX7* intronic regions, which may be implicated in aberrant *PAX7* expression in tumours;

Comparison of conserved putative *cis* elements in human, mouse, chick and zebrafish *PAX7/Pax7* homologues to identify the most conserved regions as these are more likely to be functional *cis* acting regions;

Comparison of the conserved putative *cis* elements in human *PAX7* with those of other human *PAX* genes with a view to determining the most conserved regions, to assist with identification of likely functional *cis* acting regions;

Analysis of the oncogenic potential of *trans* factors likely to bind to identified *PAX7* putative *cis* elements;

Identification of polymorphisms within or close to identified putative *cis* elements so as to provide markers for genome-wide association mapping studies to identify Rhabdomyosarcoma susceptibility loci of *Homo sapiens*.

The computational methodologies included but were not limited to systematic compilations of biological and computational results from various sources and evaluations of original experimental data with biocomputational tools and *in vitro* studies.
From our studies we identified a region in intron 8 of \textit{PAX7} that is also found in intron 23 of the \textit{NF-I} gene as well as in the alternative intron 10 of PAX3. This sequence appears to contain regulatory sequences that are conserved in all three genes and thus it seems probable that transcription factors and/or spliceosomes that bind to this region would act similarly on all three genes.

Regions of LOH, usually arising as a result of either hemizygous deletion or gene conversion events, are typically defined as stretches of chromosomal areas where all heterozygous and thereby informative alleles are rendered homozygous in the cancer. This classical definition assumes that all data points are accurately identified and that all polymorphic alleles are mapped correctly within the genome. In this project we used \textit{in silico} biology to identify additional polymorphic sites that may provide information on LOH in future studies.

Interestingly there were no changes in SNP frequency observed in the ARMS samples relative to the expected allele frequency at the selected SNPs. Since only a few SNP sites were investigated in a very few samples for this thesis, additional SNP analysis at other identified sites may reveal significant changes in allele frequency and LOH in ARMS patients.

\textbf{NOTE}

The \textit{Pax} gene encodes the murine Pax protein

The \textit{PAX} gene encodes the human PAX protein

As most developmental biology studies have been performed on mice, the mouse form of Pax will be used unless specifically referring to human in which case PAX will be used.
DECLARATION

I certify that this thesis does not, to the best of my knowledge and belief:

Incorporate without acknowledgment any material previously submitted for a degree or diploma in any institution of higher education.

Contain any material previously published or written by another person except where due reference is made in the text; or

Contain any defamatory material.

I also grant permission for the Library at Edith Cowan University to make duplicate copies of my thesis as required.

Signature: Maika Graceina Mitchell

Date: 12/11/2006
Dedication

To my dear, loving husband, Carlton Mitchell, my son Cody, and my daughter Carmen for their undying support and encouragement in my continued pursuit of higher education. I must thank Dr. Melanie Ziman for being patient with me and tackling such a difficult pursuit as supervising me here in America from Australia. I also could not have completed the research portion of my doctoral degree without the permission of my Lab Manager Dr. Diane Tabarini-Ziff who also dedicated her precious time and provided much technical support and use of the lab facilities.
List of Abbreviations

NCBI, National Center for Biotechnology Information
HD, homeodomain
ARMS, Alveolar Rhabdomyosarcoma
ERMS, Embryonal Rhabdomyosarcoma
Krd, kidney & retinal defects
BSAP, B-cell lineage specific activator protein
TG, thyroglobulin
TPO, thyroperoxidase
HTH, helix-turn-helix
Prd, Paired
Gsb-p, Gooseberry-proximal
MI, Microsatellite Instability
RMS, Rhabdomyosarcomas
HS, Heat shock
RACE, Rapid Amplification of c-terminus Ends
INSD, The International Nucleotide Sequence Database Collaboration
EST, expressed sequence tags
TrEMBL, Translated EMBL Nucleotide Sequence Data Library
NLM, National Library of Medicine
EMBL, European Molecular Biology Laboratory
UniProt, Universal Protein Resource
PDB, Protein Data Bank
MSD, The Macromolecular Structure Database
IVIAME, Minimum Information about a Microarray Experiment
GEO, Gene Expression Omnibus
GO, Gene Ontology
DAG, directed acyclic graph
SNPs, Single-nucleotide polymorphisms
VNTRs, Variable number of tandem repeats
HMM, Hidden Markov Models
AFLP, Amplified Fragment Length Polymorphisms
MLPA, Multiplex Ligation-dependent Probe Amplification
T-RFLP, Terminal-Restriction Fragment Length Polymorphism
EPCLUST, Expression Profile data CLUSTering and analysis
MICER, Mutagenic Insertion and Chromosome Engineering Resource
ORFs, Open reading frames
List of Abbreviations continued…

ml, milliliter
ul, microliter
nm, nanometers
ddH2O, double distilled water
PCR, polymerase chain reaction
AQ, allele quantification
PSQ, Pyrosequencer
NF-1, neurofibromatosis factor 1
TSS, transcription start site
bp, base pair
TF, Transcription Factor
SSLP, Simple sequence length polymorphisms
nt, nucleotide
LOH, Loss of heterozygosity
CNP, Copy Number Polymorphism
5', five prime end of DNA strand
3', three prime end of DNA strand
FKHR, Fork Head Region
MAS, Marker Assisted Selection
Lists of figures and tables for chapter thesis (excluding papers 1, 2, and 3)

PAX1 Page 2
PAX9 Page 3
PAX2 Page 4
PAX5 Page 4
PAX8 Page 5
PAX3 Page 6
PAX7 Page 7
PAX4 Page 8
PAX6 Page 8
Figure 1. The paired domain of Pax-3 and Pax-7 Page 11
Figure 2. A density-modified MI (Microsatellite instability) map Page 12
Figure 3. Pax paired domain-DNA complex Page 13
Figure 4. Predicted structure of the Paired and homeodomain of Pax proteins Page 15
Figure 5. A dorsal view of Hamburger and Hamilton stage 17 chick embryos Page 17
Figure 6. Conserved locations of regulatory promoter elements Page 23
Figure 7. Depiction of CAAT box, TATA box and GC box Page 24
Figure 8. This HS-40 α-globin regulatory site Page 25
Figure 9. Promoter region of human PAX7 Page 27

Lists of figures and tables for Paper 1

Table 1. CLC Gene Workbench v.1.0.1. Pattern Discovery Search Page 51
Figure 1. Cis regulatory region predicted by CLC Gene Workbench, Page 51
Table 1. CLC Gene Workbench v.1.0.1. Pattern Discovery Search Page 52
Figure 2. No cis element predicted, but 1 pattern found within 400-500 bps Page 52
Table 2a-3b. CLC Gene Workbench v.1.0.1. Pattern Page 52-53
Figure 3. Cis regulatory region predicted Page 54
Table 5a-5f. CLC Gene Workbench v.1.0.1. Pattern Discovery Page 55-56
Figure 5. Cis regulatory region predicted Page 56
Table 6. CLC Gene Workbench v.1.0.1. Pattern Discovery Search Page 57
Figure 6. Cis regulatory region predicted Page 57
Table 7. CLC Gene Workbench v.1.0.1. Pattern Discovery Search Page 58
Figure 7. Cis regulatory region predicted Page 58
Table 8a-8e. CLC Gene Workbench v.1.0.1. Pattern Discovery Search Page 58-59
Figure 8. Cis regulatory region predicted Page 60
Table 9. Summary of most likely cis regulatory sequences Page 60
Table 10. Summary of most likely cis regulatory sequences predicted Page 60-61
Figure 9. Conserved sequence in intron 8 of PAX7 Page 61
Figure 10. Conserved sequence in intron 8 of PAX7 Page 62

Lists of figures and tables for Paper 2

Table 1. Primers Page 68
Figure 2. Agarose Gel electrophoresis showing DNA isolated from volunteer buccal swabs, ERMS cell line and ARMS patient DNA Page 70
Figure 3. Fragment analysis results for ARMS Patient #1, Primer 5 with electropherogram and peak table Page 70
Figure 4. Fragment analysis results for ARMS Patient #2, Primer 5 with electropherogram and peak table Page 70
Figure 5. Fragment analysis results for ARMS Patient 31, Primer 5 with electropherogram and peak table Page 71
Figure 6. Fragment analysis results for ARMS Patient #4, Primer 5 with electropherogram and peak table Page 71
Figure 7. Fragment analysis results for ARMS Patient #5, Primer 5 with electropherogram and peak table Page 72
Figure 8 & Figure 9. Fragment analysis results for ERMS cell line(ATCC#: CCL 136) and control sample, with Primer 5 showing electropherograms and peak tables Page 72
Figure 10. Fragment analysis results for ARMS Patient #1, Primer 16 with electropherogram and peak table. Page 73
Figure 11. Fragment analysis results for ARMS Patient #2, Primer 16 with electropherogram and peak table. Page 73
Figure 12. Fragment analysis results for ARMS Patient #3, Primer 16 with electropherogram and peak table. Page 73
Figure 13. Fragment analysis results for ARMS Patient #4, Primer 16 with electropherogram and peak table. Page 74
Figure 14. Fragment analysis results for ARMS Patient #5, Primer 16 with electropherogram and peak table. Page 74
Figure 15. Fragment analysis results for ERMS Cell line (ATCC#: CCL 136), Primer 16 with electropherogram and peak table. Page 74
Figure 16. Fragment analysis results for CONTROL sample (genomic DNA) with Primer 16 with electropherogram and peak table. Page 74
Figure 17. Fragment analysis results for ARMS Patient #1, Primer 37 with electropherogram and peak table. Page 75
Figure 18. Fragment analysis results for ARMS Patient #2, Primer 37 with electropherogram and peak table. Page 75
Figure 19. Fragment analysis results for ARMS Patient #3, Primer 37 with electropherogram and peak table. Page 75
Figure 20. Fragment analysis results for ARMS Patient #4, Primer 37 with electropherogram and peak table. Page 76
Figure 21. Fragment analysis results for ARMS Patient #5, Primer 37 with electropherogram and peak table. Page 76
Figure 22. Fragment analysis results for CONTROL sample (genomic DNA) with Primer 37 with electropherogram and peak table. Page 77
Figure 23. Fragment analysis results for ERMS Cell line (ATCC#: CCL 136), Primer 37 with electropherogram and peak table. Page 77

Lists of figures and tables for Paper 3
Figure 1. Cis element (GGGGATGGG indicated in teal; Mitchell and Ziman 2006) found in Human PAX7 intron eight located near SNP rs742074 (Y = IUPAC code for (C/T)). Page 91
Figure 2. Cis element CTCCTCCC indicated in pink (Mitchell and Ziman 2006) found in Human PAX7 intron 8 located before SNP rs735630 (M = IUPAC code for C/A). Page 92
Figure 3. Multiple alignment of PAX7 transcript variants. Page 92
Figure 4. Invitrogen™ 4% precast Agarose Gel electrophoresis showing serial dilution for DNA isolated from volunteer buccal swab. Page 93
Figure 5. The results of the Biotage© Pyrosequencing™ PSQ HS 96A & Sanger sequencing for Primers 23, 24 & 40 for ARMS, and Control Samples. Page 93-95
TABLE OF CONTENTS

CHAPTER ONE: PAX GENES/ PROTEINS

A. THE PAX FAMILY

1. The PAX1/PAX9 Subfamily .. 2
2. The PAX2/PAX5/PAX8 Subfamily .. 3
3. The PAX3/PAX7 Subfamily ... 5
4. The PAX4/PAX6 Subfamily .. 7

B. PAX 7 PROTEIN FUNCTION

1. DNA Recognition Mediated by the Paired Domain 10
2. DNA Recognition Mediated by the Homeodomain 14

C. FUNCTION OF PAX7 DURING EMBRYOGENESIS

1. Neurulation ... 16
2. Pax7 in the neural tube, neural crest cells and the dermamyotome of the somites.. 17
3. Pax7 in developing and adult muscle tissues 18

D. Rhabdomyosarcoma

1. Alveolar Rhabdomyosarcoma (ARMS) 19
2. Embryonal Rhabdomyosarcoma (ERMS) 19

CHAPTER TWO: THE REGULATORY REGIONS RESPONSIBLE FOR PAX7 EXPRESSION

A. IDENTIFICATION OF BINDING SITES USING IN SILICO BILIOGY

IN SILICO BILIOGY METHODS ... 21

B. PUTATIVE CIS ELEMENTS OF GENE ... 23

- TATA Box .. 23
- GC box .. 23
C. KNOWN PUTATIVE CIS ELEMENTS RESPONSIBLE FOR PAX7 EXPRESSION

CHAPTER THREE: PAX7 MEDIATED ONCOGENIC PATHWAY:
ANALYSIS FACILITATED BY IN SILICO BIOLOGY

A. AIMS OF PROJECT -

➢ OVERALL AIM:
To analyze the molecular mechanism or mechanisms of PAX7 mediated oncogenesis

➢ Aim 1.
To identify cis-regulatory sequences in intronic regions of PAX7 (Homo sapiens)

➢ Aim 2
To compare putative cis elements in human, mouse, chick and zebrafish PAX7/Pax7 homologues to identify conserved regulatory sequences

➢ Aim 3
To compare putative cis elements in PAX7 (Homo sapiens) with those in other PAX genes (PAX1-9)

➢ Aim 4
To analyze the oncogenic potential of trans factors likely to bind to those putative cis elements identified in the intronic regions of PAX7

➢ Aim 5
To identify polymorphism(s) in intronic regulatory sequences of PAX7
B. THEORETICAL FRAMEWORK

The use of *In Silico* Biology and *in vitro* experiments to detect *cis* and *trans* factors that aberrantly regulate *PAX7* expression in Rhabdomyosarcoma...30

C. MATERIALS AND METHODS...39

D. JOURNAL ARTICLES 1-3...47

1. Investigation into Discovery of Putative *cis* elements within the Intronic Regions of Human *PAX7*...47

2. Loss of Heterozygosity Analysis at selected Single Nucleotide Polymorphism Sites in the Intronic Regions of *PAX7* via *In Silico* Biology & Microsatellite Analysis...66

3. Single Nucleotide Polymorphisms, Present in the Fusion Gene of the Intronic *Cis* Regulatory Regions of *PAX7*, Detected (observed) in Rhabdomyosarcoma via *In Silico* Biology and Pyrosequencing...82

CHAPTER FOUR: *IN SILICO* RESULTS...99

CHAPTER FIVE: DISCUSSION & CONCLUSION...127

CHAPTER SIX: FUTURE RESEARCH INITIATIVES BASED ON RESULTS FOUND IN THIS THESIS...128

REFERENCES...129

APPENDICES..139
CHAPTER ONE: PAX GENES/ PAX PROTEINS

A. THE PAX FAMILY

Pax genes derive their name from the Paired box gene region which encodes a highly conserved Paired DNA binding domain. Paired domains are found in all members of the **PAX** family. The **PAX** gene family appears to have evolved by a combination of gene duplication and / or genome duplication events over a long period of evolutionary time. In man and mouse nine **PAX/Pax** genes have been found. Each member of the **PAX** gene family is expressed in a spatially and temporally restricted pattern during embryogenesis. There are four classes of **PAX** genes based not only on sequence but on genomic organization. Genes within a given class have intron/exon boundaries and encoding regions in common. Several **PAX** genes also encode an octapeptide and a full or partial paired type homeodomain. A proline-rich acidic region at the COOH terminus is identified as the transactivation domain for **PAX** proteins.

- **PAX1 & 9**: have a paired box with no introns and an octapeptide encoding region
- **PAX2, 5 & 8**: have a paired box, a homeobox and an octapeptide encoding region
- **PAX3 & 7**: have a paired box, a homeobox and an octapeptide encoding region
- **PAX4 & 6**: have a paired box and a homeobox

Mouse *Pax* genes are expressed in a distinct pattern throughout embryogenesis. Generally *Pax* genes which have both a paired box and a homeobox, are expressed earlier (Erickson et al., 1993). Early in development, expression is observed in mitotically active cells, whereas at later developmental stages, *Pax* genes are expressed in lineage restricted cells. *Pax1* and 9 are expressed only in mesodermally derived tissue. The other *Pax* genes are expressed in the ectoderm.

Pax gene products are thought to function primarily by binding to enhancer DNA sequences and modifying the transcriptional activity of bound downstream target genes (Chi and Epstein, 2002).

Their importance as developmental genes is highlighted by the corresponding mutated phenotypes. In the heterozygote, the mutated *Pax* gene is semi-dominant, whereas homozygote mice do not generally survive to birth. The dosage of these genes therefore is critical and the exact phenotype produced in the mutant is a combination of genetic and environmental factors.
1. The PAX1/PAX9 Subfamily

The Pax1 and Pax9 proteins, categorized as the Group I subfamily, are proteins with the paired domain and octapeptide but without a homeodomain (Ogasawara et al., 1999). Pax1 and Pax9 are present in the sclerotome and are required for proper formation of the vertebral column (Rodrigo et al., 2004).

PAX1/Pax1

<table>
<thead>
<tr>
<th align="center">PAX1: paired box gene 1; Chromosomal Location: 20p11.2 (HUMAN); molecular type=genomic DNA</th>
</tr>
</thead>
</table>

Expression of Pax1 mRNA in the embryonic thymus has also been reported (Balling et al., 1996). Expression starts in the early endodermal epithelium lining the foregut region and includes the epithelium of the third pharyngeal pouch, a structure giving rise to part of the thymus epithelium. In early stages of thymus development a large proportion of thymus cells express Pax1. With increasing age, the proportion of Pax1-expressing cells is reduced and in the adult mouse only a small fraction of cortical thymic stromal cells retains strong Pax1 expression. Expression of Pax1 in thymus epithelium is necessary for establishing the thymus microenvironment required for normal T cell maturation (Wallin et al., 1996).

PAX1 Human Mutations: Klippel-Feil syndrome associated with sacral agenesis

Pax1 Mouse Mutations: spinal defect (*undulated*)
PAX9/Pax9

PAX9: paired box gene 9; Chromosomal Location: 14q12-q13.1 (HUMAN); tissue type = Lung, small cell carcinoma.

Pax9: paired box gene 9; Chromosomal Location: 12 (MOUSE); development stage = day 11.

Pax9 is expressed in the pharyngeal pouch, vertebral column, tail (mouse), head and limbs. *Pax9* is paralogous to *Pax1*. *PAX9* has been associated with dominantly inherited forms of human tooth agenesis that mainly involves posterior teeth (Frazier-Bowers et al., 2002).

PAX9 Human Mutations: selective tooth agenesis

Pax9 Mouse Mutations: Tooth development is arrested at the bud stage; homozygote knockouts have secondary cleft palate and other abnormalities in craniofacial bones and cartilage.

2. The PAX2/PAX5/PAX8 Subfamily

In vertebrates, the *PAX2, PAX5* and *PAX8* genes have been grouped into a common subfamily based on their sequence similarity and expression pattern. PAX2/PAX5/PAX8 protein members share in common the paired domain, an octapeptide motif, and a partial homeodomain. The *PAX2* gene is expressed during multiple stages of vertebrate nephrogenesis and when mutated, human genetic diseases of the genitourinary system arise (Majumdar et al., 2000).
PAX2/Pax2

PAX2: Paired box gene 2; Chromosomal Location: 10q24.31 (HUMAN); tissue type=optic nerve; development stage=adult.

- Pax2: Paired box gene 2; Chromosomal Location: 19 C3 (MOUSE); tissue type=brain; developmental stage=12 days

PAX2 is expressed in the hindbrain and neural tube, optic stalk and vesicle, and during kidney organogenesis.

PAX2 Human Mutations: (optic nerve coloboma with renal disease)

Pax2 Mouse Mutations: cause Krd (kidney & retinal defects)

PAX5/Pax5

PAX5: Paired box gene 5 (B-cell lineage specific activator protein) Chromosomal Location: 9p13 (HUMAN); cell type=B-lymphocyte found in the developing CNS and adult testis.

- Pax5: Paired box gene 5 Chromosomal Location: 4 B1 (MOUSE); cell type=B-lymphocyte found in the developing CNS and adult testis.
Pax5 is expressed in fetal liver, B-lymphoid cells, mesencephalon and spinal cord. It is the B-cell lineage specific activator protein (BSAP) and controls expression of the CD19 gene (earliest B-lineage restricted cell surface antigen). Pax5 (BSAP) acts both as a transcriptional activator and a repressor (Alexander et al., 2002). In addition to its role early in B cell differentiation, Pax5 is also essential for later stages, when it influences the expression of many genes (Horcher et al., 2001).

PAX5 Human Mutations: possible link between PAX5 and human primary immunodeficiencies (Vorechovsky et al. 1995)

Pax5 Mouse Mutations: cause Krd

PAX8/Pax8

PAX8: paired box gene 8; Chromosomal Location: 2q12-q14 (HUMAN); tissue type=thyroid gland, fetal eyes, lens, eye anterior segment, optic nerve, retina, Retina Foveal and Macular, RPE and Choroid; development stage=fetal and adult

Pax8: paired box gene 8; Chromosomal Location: 2 B (MOUSE); tissue type=Kidney, normal, 5 month old male mouse.

Murine Pax8 gene is expressed in the developing secretory system as well as in the developing and adult thyroid. This restricted expression pattern suggests involvement of the Pax8 gene in morphogenesis of the above organs and prompted investigation of the PAX8 gene in humans (Poleev,. 1992). Human PAX8 is present in both the thyroid and kidney and it transactivates two thyroid specific genes, thyroglobulin (TG) and thyroperoxidase (TPO).

PAX8 Human Mutations: Thyroid dysgenesis (congenital hypothyroidism); follicular carcinoma

Pax8 Mouse Mutations: kidney malformations
3. The PAX3/PAX7 Subfamily

PAX3 and PAX7 are closely related paired box family members expressed during early neural and myogenic development. Pax3 and Pax7 genes have been implicated in the development of specific myogenic and neurogenic cell lineages (Glaser et al., 1996; Relaix et al., 2004). Assay of PAX3 and PAX7 mRNA expression in embryonal rhabdomyosarcoma, neuroblastoma, Ewing’s sarcoma, and melanoma cell lines revealed tumor-specific expression patterns that correspond to expression patterns in corresponding embryonic cell lineages (Barr et al., 1999; Zhang et al., 2003; Barr et al., 2005).

PAX3/Pax3

\[
PAX3: \text{Paired box gene 3; Chromosomal Location: } 2q35-q37;2q35 \text{ (HUMAN); cell_type=fibroblast, male.}\n\]

\[
Pax3: \text{Paired box gene 3; Chromosomal Location: } 1 \text{ C4 (MOUSE); tissue type=parthenogenote (the growth and development of an embryo or seed without fertilization by a male); development stage=9.5 days embryo.}\n\]

PAX3 is expressed in the neural tube, neural crest, dermomyotome & limb buds.

PAX3 Human Mutation: Waardenburg syndrome WS1 and Klein- Waardenburg WS III (pigmentary disturbances, dystopia canthorum, deafness in WS I plus limb abnormalities in WS III)

Pax3 Mouse Mutation: Splotch mouse phenotype
PAX7/Pax7

PAX7: Paired box gene 7; Chromosomal Location: 1p36.2-p36.12 (HUMAN); tissue type=alveolar rhabdomyosarcoma tumor, containing t(2;13); isolate=patient 282A.

Pax7: Paired box gene 7; Chromosomal Location: 4 E1 (MOUSE); tissue type=skeletal muscle.

Pax7 is expressed in the developing nervous system; initially in the dorsal ventricular zone of the neural tube and later in the mesencephalon. Pax7 is also expressed in the neural crest and the dermamyotome. Pax7 is specifically expressed in satellite cells of skeletal muscle and is required for the specification of the satellite cell lineage (Seale et al., 2000).

PAX7 Human Mutations: alveolar rhabdomyosarcoma

Pax7 Mouse Mutations: Failure of caudal pharyngeal morphogenesis, small musculature, and limited muscle regeneration.

4. The PAX4/PAX6 Subfamily

The paired-homeodomain transcription factor Pax4 is present in the developing pancreas and along with Pax6 is required for normal development of endocrine cells. In the absence of Pax4, the numbers of insulin-producing \(\beta\) cells and somatostatin-producing \(\beta\) cells are drastically reduced, while the numbers of glucagon-producing \(\alpha\) cells are increased (Smith, 1999).
PAX4/Pax4

PAX4: Paired box gene 4: Chromosomal Location: 7q22-qter (HUMAN); tissue type=placenta

![Gene Diagram](image1)

Pax4: Paired box gene 4: Chromosomal Location: 6 A3.3 (MOUSE); cell type=pancreas.

![Gene Diagram](image2)

Pax4, of all the nine members, has the most divergent paired domain of the family. Although the Pax4 is essential for differentiation of insulin-producing beta-cells in the pancreas. Pax4 has also been identified as a regulator of endocrine development, and has been shown to target gene promoters in an alpha-TC1.6 cell line (Frank et al., 2004).

PAX6/Pax6

PAX6: Paired box gene 6: Chromosomal Location: 11p13 (HUMAN); tissue type=total brain; development stage=3 months old.

![Gene Diagram](image3)

Pax6: Paired box gene 6: Chromosomal Location: 2 E3 (MOUSE); tissue type=embryo; development stage=day 8.5 post coitum, d 11.5 post coitum.

![Gene Diagram](image4)

Pax6 is expressed in the neural tube, in discrete areas of forebrain, hindbrain, eye and olfactory epithelium.

PAX6 function was first identified through aniridia-associated null mutations. Since then, this transcription factor, which contains a paired domain and a homeodomain, has become a
paradigm, illustrating remarkable functional conservation in developmental pathways of the eye. The Small eye mutant mouse and Drosophila Eyeless have served as major model systems in defining the multistage roles for Pax6 in eye and olfactory system development throughout evolution. The overt phenotypic consequences of heterozygous human and mouse PAX6/Pax6 mutations were initially confined to the eye, with some interesting genotype–phenotype correlations being noted. Recently, structural and functional abnormalities in the olfactory system have been identified. Alterations in brain structure have also been documented, in line with the wider forebrain and cerebellar expression of Pax6 (Azuma et al., 2005; van Heyningen, & Williamson, 2002). The broad Pax6 expression pattern is controlled by a number of long-range control elements, and its importance is reflected in the severe homozygote phenotype. Upstream regulators and a multitude of downstream targets of Pax6 have been identified, and its varied tissue-specific functions are emerging (Heyningen, et al., 2002).

PAX6 Human Mutation: *aniridia*

Pax6 Mouse Mutation: *smalleye*

IN SUMMARY: Pax genes are responsible for early cell lineage determination of many tissues and play a role in proliferation and maintenance of the undifferentiated cell state. Increasingly, their aberrant expression is associated with tumors arising from these specific cell types.
CHAPTER ONE: PAX GENES/PROTEINS

B. PAX 7 PROTEIN FUNCTIONS

1. DNA Recognition Mediated by the Paired Domain

The paired domain is a 128 amino acid conserved domain which was originally found encoded by the Drosophila segmentation genes paired and gooseberry. The paired DNA-binding domain is strongly conserved from nematodes to mammals (Treisman et al., 1991; Mikkola et al., 1999). Proteins containing paired domains are transcription factors which bind to DNA (Xu et al. 1995; Fitzsimmons, et al., 2001; Wang, et al., 2005). The Paired domain, N-terminal motif is encoded by eight isoforms of Pax7. Eight other PAX transcription factors (PAX1, PAX2, PAX3, PAX4, PAX5, PAX6, PAX8) and associated isoforms, contain this motif.

Within the paired domain are two sub-domains (PAI and RED) which might act independently or may cooperate in the recognition of specific target gene promoter sequences in vivo (Vogan et al., 1996; Zhang et al., 2005). Each sub domain contains a DNA binding domain that consists of a set of three alpha-helices arranged in a helix, helix-turn-helix (HTH) motif. Within each of these HTH motifs, it is the third helix that contacts the specific DNA target sequence (Figures 1-4). Human PAX7 cDNA, isolated from primary myoblasts and expressed in vitro (Schafer et al., 1994), was analyzed for its DNA-binding properties and was shown to bind DNA in a sequence-specific manner similar to that of the paralogous PAX3 protein (Schäfer et al., 1994; Du et al., 2004; Du et al., 2005).
Sequence of the paired domain in *Homo sapiens*

PAX7 PD

Query: 1
GGGRVNLGQFINGRLPHNNLKLIVEMAADGIRPCVISRGLYSHGCYSKILNRQET 50

PAX7 PD

Query: 61
G51RPGV1GGSKPRAITPEIENRILEYERMSPGMTHIIEEEKLIREGVCDSRSASTAPSYAI 120

PAX7 PD

Query: 121
SRLVRGD 128

Figure 1. The paired domain of Pax-3 and Pax-7. (A) Schematic representation of the paired domain. The N- and C-terminal subdomains are shown, with the six α-helices indicated by rectangular boxes. Shown below are the sequences of the linker regions (residues 60 to 80) of Pax-3, Pax-7, and other Drosophila and mammalian paired-domain-containing proteins (24, 30). Identical residues are indicated by dashes. Abbreviations for the Drosophila proteins: Pox-n, Pox-neuro; Prd, Paired; Gsb-p, Gooseberry-proximal. The additional glutamine in alternate isoforms of Pax-3, Pax-7, and Drosophila Pox-n is indicated by an asterisk. pst., position. (Vogan et al., 1996).