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ABSTRACT 

The Arabian Gulf oil and gas production reserves have made it one of the world’s 

strategic producers since early 1960s, with many of the existing platforms stretched 

beyond their original design life.  Advances in drilling technology and reservoir 

assessments have extended the requirement for the service life of those existing 

platforms even further.   Extension of the life span of an existing platform requires 

satisfactory reassessment of its various structural components, including piled 

foundations. 

The American Petroleum Institute Recommended Practice 2A (API RP2A) is 

commonly used in the Arabian Gulf for reassessment of existing platforms.  The 

API guidelines have been developed for conditions in the Gulf of Mexico, the 

waters off Alaska and the Pacific and Atlantic seaboards of the USA.  However, the 

Arabian Gulf conditions are fundamentally different to those encountered in US 

waters.  Hence, there is a need to develop guidelines for reassessment of existing 

offshore structures to account for the specific conditions of the Arabian Gulf. 

This thesis performs statistical analyses on databases collected during this research 

from existing platforms to calibrate relevant load and resistance factors for the 

required guidelines.  The developed guidelines are based on established approaches 

used in developing international codes and standards such as API RP2A-LRFD. 

The outcome of this research revolves around the following three main issues: 

1. Calibration of resistance factors for axial capacity of piles driven in the 

carbonate soils 

API RP2A (1993, 2000) does not quantify limiting soil parameters for piles driven 

in carbonate soils and provides a single factor to predict the capacity of piled 

foundations.  This research identifies a set of limiting engineering parameters and 

calibrates corresponding capacity reduction factors to predict axial capacity of 

driven piles in the carbonate soils of the Arabian Gulf. 
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Further, this thesis shows that the use of a single capacity reduction factor of 0.7, an 

approach that is adopted in API RP2A-LRFD (1993), does not consider that axial 

pile capacity in existing platforms is influenced by many parameters identified in 

this research, including implied risk level, manning levels, variation in pile wall 

thickness along its depth, soil composition, hammer type, installation method, 

penetration ratio and the level of optimization in the original design.  The 

reassessment guidelines developed in this research recommends a set of capacity 

reduction factors within a range of 0.4-1.0 to reflect the influence of the factors 

discussed above. 

2. Development of open area live loads (OALL) on offshore platforms  

API RP2A-LRFD (1993) refers to ASCE Standard 7-05 to quantify live loads.  

However, ASCE Standard 7-05 is only applicable to building structures and does 

not quantify values for OALL on offshore platforms.  This thesis reveals that, unlike 

building structures, the magnitude of OALL on an offshore platform deck is not 

independent of loading conditions. 

OALL values on offshore platforms are rather affected by factors such as platform 

size, safe working load (SWL) of materials handling equipment, expected life span 

of the platform, deck location on the platform (upper deck versus other decks) and 

the selected influence surface (pile, primary beams, secondary beams or topside 

columns).  This research investigates those factors and recommends a simplified 

formula to calculate OALL.  The proposed formula is a function of the SWL of the 

material handling equipment which dominates the magnitude of the OALL. 

Reassessment applications require a combination factor for OALL, which is a 

function of the coefficient of variation (COV) of the mean lifetime maximum live 

loads.  This thesis proposes a combination factor of 1.5 on the basis that the COV = 

10% to 20% of the mean lifetime maximum live loads on offshore platforms, which 

is calculated in this research, is similar to the COV (14%) used to develop the live 

load combination factor (1.5) in API RP2A-LRFD (1993). 
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3. Effect of extreme storm conditions on the reliability of existing platforms in 

the Arabian Gulf 

In the process of calibrating pile resistance factors and development of OALL, this 

research develops a set of statistical parameters for load and resistance factors.  The 

statistical parameters are used to perform reliability analysis on a selected platform 

in the Arabian Gulf.  The platform is selected such that the outcome of the reliability 

analysis is applicable to other platforms in that region. 

The outcome of the reliability analysis reveals that operating overload conditions 

dominate the failure mechanism in the Arabian Gulf.  The reliability analysis 

resulted in an insignificant (10-71) probability of failure under extreme storm 

conditions compared to the higher value (10-6) under operating overload conditions. 

Such extreme values are only possible in a mathematical model and have little 

physical meaning.  Nevertheless, and despite lack of a physical meaning to such 

extremely low failure probability value, it demonstrates that operating overload 

dominates the failure mechanism in the Arabian Gulf.  The extremely low 

probability of failure is partly a result of no wave-in-deck as the wave heights are 

lower than the deck at high return periods. 

Consequently, reassessment of existing platforms in the Arabian Gulf would be 

sufficiently addressed by considering operating overload conditions only.  This 

contrasts with Section ‘R’ of API RP2A (1993, 2000), which focuses on extreme 

environmental conditions when performing reassessment. 

The probabilities of failure considered in this research do not include errors and 

omissions (controlled by quality assurance procedures) or material deterioration 

(controlled by choice of materials, detailing, protective devices, and inspection and 

repair procedures) or reliability-based maintenance. 

Addressing operating overload conditions requires attending to two issues, namely 

the capacity of piles driven in carbonate soils and OALL, which have been 

addressed in this research.  The operational overload situation is likely to occur 

during shutdown condition or during drilling or work over activities where 
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significant OALL are usually applied to platform decks.  Such operational overload 

can be managed by placing signs at various open areas on the platform nominating 

the maximum load limits (kPa), introducing procedures that ensure that maximum 

load limits are not exceeded during operation and management of human behavior 

by reinforcing the importance of following the procedures. 

The outcomes of this research are expected to have a profound influence on 

reassessment of existing platforms in the Arabian Gulf. 
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DEFINITIONS 

Definitions adopted by researchers are often not uniform, so key and controversial 

terms are defined in this section to establish positions taken in the research.  

Fellenius (1999) recommended some of the following definitions adopted in this 

research. 

Term Definition 

Allowable Load Maximum load that may be safely applied to a 
foundation unit under expected loading and soil 
conditions and determined as the Capacity divided by 
the Factor of Safety. 

Applied (Service) Load Load actually applied to a foundation unit 

Axial, Bearing, Shaft 
and Toe Capacity 

Ultimate Resistance of the unit. 

Blow count During pile driving, the blow count represents the 
count of blows for a specified penetration of the pile 
into the soil.  Typically, the count of blows is measured 
for a pile driven one foot into the soil and the blow 
count is recorded in a pile driving record. 

Capacity The maximum or ultimate soil resistance mobilized by 
a foundation unit.  It is used as a stand-alone term and 
is synonymous with Ultimate Resistance. 

Capacity, bearing The maximum or ultimate soil resistance mobilized by 
a foundation unit subjected to downward loading.  It is 
the sum of the shaft resistance and the toe or ‘end 
bearing’ resistance. 

Dynamic Monitoring The recording of strain and acceleration induced in a 
pile during driving and presentation of the data in terms 
of stress and transferred energy in the pile as well as of 
estimates of capacity. 
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Term Definition 

Factor of Safety The ratio of maximum available resistance or of the 
capacity to the code allowable stress or load. 

Loading Test Refers to the situation of a test performed by loading a 
pile while Load Test is a test for finding out what load is 
applied to a pile. 

Limit State A state that defines the boundary between a safe and 
unsafe situation 

Penetration Resistance Effort required in advancing a pile.  When quantified, it 
is either the number of blows required for the pile to 
penetrate a certain distance or the distance penetrated for 
a certain number of blows.   

Pile Head The uppermost end of a Pile 

Pile Impedance A material property of a pile cross-section determined as 
the product of the Young's modulus (E) and area (A) of 
the cross section divided by the wave speed (c). 

Pile Point A special type of pile shoe. 

Pile Shaft  The portion of the pile between the pile head and the pile 
toe.   

Pile Shoe A separate reinforcement attached to the pile toe of a pile 
to facilitate driving, to protect the lower end of the pile 
and/or to increase the toe resistance of the pile. 

Pile Toe The lowermost end of a pile.    

Pore Pressure Pressure in the water and gas present in the voids 
between the soil grains minus the atmospheric pressure.   

Probability of failure This is an unfortunate choice of wording because it can 
be mistakenly treated as being synonymous with the 
actual rate of failure.  The prefix “nominal” or “notional” 
is often applied to the probability of failure to emphasize 
its formal nature (CIRIA, 1977, Ellingwood et al., 1980, 
Melchers, 1999).  An alternative would be to use the 
reliability index, β, which is mostly free of such 
connotation. 
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Term Definition 

Quantitative Risk 
Assessment (QRA) 

Formal and systematic approach for identifying 
potentially hazardous events and estimating likelihood 
and consequences of accidents developing from these 
events to people, environment and resources. 

Ultimate Load Capacity evaluated from the results of a static loading 
test. 

Set Penetration for one blow, sometimes penetration for a 
series of blows. 

Setup or Soil Setup Describes the effect of resistance increase with time after 
driving.  This term is sometimes referred to as Soil 
Freeze but this term will not be used in this thesis as it 
has a different meaning for cold regions of the world. 

Shaft Resistance Calculated as the integral over the embedded pile area of 
the unit skin friction value 

Structural Analysis Refers to the technique of making stiffness or stress 
calculations while Structural Assessment includes the 
whole process of modeling the problem, analysis and 
interpretation of the results. 

Structural Reliability 
Analysis (SRA) 

SRA aims at determining the probability of failure of a 
Limit State that, in its basic form, attains an unsafe 
situation.  In SRA, a Limit State is represented, again in 
its basic form, by a Limit State equation which attains a 
negative value for unsafe situations and a positive value 
for safe situations.  The Limit State equation incorporates 
basic random variables defined by probability density 
functions through (a) statistical analysis of existing 
sample data and (b) by experience and theoretical 
considerations.  The representation of real structural 
systems may involve a number of Limit States (such as 
buckling, yielding, fatigue or excessive deformation 
under various loading conditions), some of which may be 
represented by a number of different failure equations.   

In this case, the analysis needs to incorporate statistical 
correlation effects between the basic random variables as 
well as between Limit State equations (a set of basic 
random variables only affect the outcome of different 
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Limit State equations). 

In this thesis, SRA is primarily concerned with 
calculating the probability of ultimate collapse of the 
total substructure due to extreme environmental storm 
loading.  It does not treat all possible hazards to the 
structure from a QRA viewpoint. 

Toe Resistance Soil resistance acting on the pile toe 

Transferred Energy The energy transferred to the pile head and determined as 
the integral over time of the product of force, velocity, 
and pile impedance. 

Wave Speed The speed of strain propagation in a pile. 

Wave Trace A graphic representation against time of a force or 
velocity measurement. 



 

xix 

NOMENCLATURE 

Symbol Definition 

A Side surface area of pile or a factor to account for cyclic or static loading 

BOR beginning of restrike 

BS base shear 

c Constant that accounts for the errors associated with simplification of the 
equation describing reliability of pile groups 

C Wave speed in m/s 

CAPWAP Case Pile Wave Analysis Program 

COV Coefficient of variation 

COVQ Coefficient of variation of load 

COVQD Coefficients of variation for dead load (QD) 

COVQL Coefficients of variation for live load (QL). 

COVR Coefficient of variation of resistance 

COVχ Coefficient of variation of system effect 

COVζ  Coefficient of variation of group efficiency 

CS Soil type dominated by clayey soils overlain by sandy soils 

CC Carbonate content 

C(x,y) Influence coefficient 

Cdb Hammer damping factor 

d Mean water depth 

D Diameter of a pile or hammer damping input value 

Dn Nominal dead load 
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Symbol Definition 

DOE Department of Energy 

d/gT2
app Dimensionless relative depth 

EOD End of driving 

E(W) Mean of the equipment weights 

Eh Hammer efficiency 

Er Manufacturer rated hammer energy 

ETR Energy transfer efficiency 

F Unit skin friction capacity or total axial force on the column using influence 
surface diagram 

F(x) A value used to approximate Cumulative Distribution Function at each value of x 

FORM First order reliability method 

fs,si Limit on unit friction value for a silica sand with a carbonate content (CC) of 20% 
or lower 

fs,80 Limit on unit friction value applicable with carbonate content (CC) of 80% or 
greater 

FOS Factor of safety 

g Acceleration of gravity 

H/gT2
app  Dimensionless wave steepness 

H Wave height 

HAT Highest astronomical tide 

Hs Significant wave height 

Hb Breaking wave height 

Js Damping constant for skin friction 

Jp Damping constant for  end bearing 

kram Hammer cushion or impact block or ram stiffness 
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Symbol Definition 

k Initial modulus of subgrade reaction in force per volume units 

K Coefficient of lateral earth pressure 

kN Kilo Newton = Unit of pressure measurement 

L Length of a pile or wave length 

LAT Lowest astronomical tide 

Ln Nominal live load 

LT Lifetime of T years 

LRFD Load Resistance Factor Design 

m Shape parameter for Weibull distribution 

MHHW Mean higher high water 

MHLW Mean higher low water 

MLHW Mean lower high water 

MLLW Mean lower low water 

MN Mega Newton = 1000 * kN 

MPa Mega Pascal 

mram Ram mass 

MSL Mean sea level 

N Bearing capacity factor 

OALL Open area live load 

Pa Pascal 

p-y curve Lateral soil resistance-deflection curve 

( )BAP j  
Posterior distribution on A 

( )jABP
 

Likelihood function of the data 
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Symbol Definition 

P(Aj) Prior distribution on A 

psf or lb/ft2 Pounds per square foot 

PH Horizontal load 

PV Vertical load 

pu  Ultimate bearing capacity at depth X in units of force per unit length 

Pf Probability of failure 

Pf a Annual probability of failure  

Pf L Probability of failure for a lifetime of L years 

PDA Pile Driving Analyzer 

q-z curve Relation between mobilized end bearing resistance & axial tip deflection 

Q Load as described in reliability formulation 

Qt Total capacity of a pile 

Qs Skin friction capacity of a pile 

QP End bearing capacity of a pile 

Qi Nominal load effect 

Qmean Mean load 

q Unit end bearing capacity 

Q80 Limit on end bearing applicable to  carbonate content of 80% or higher 

Qsi Limit on end bearing applicable to silica sand with a carbonate content of 20% or 
lower 

R Resistance as described in reliability formulation 

R2 Correlation coefficient value – a measure of correlation between two sets of data. 

RP Return period 

Rmean Mean resistance  

Rm Measured value of resistance 
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Symbol Definition 

Rn Nominal resistance or predict nominal pile capacity using API RP2A 

Sb Set per blow 

su Undrained shear strength 

SRD Soil resistance to driving 

SRA Structural reliability analysis 

SACS Structural analysis computer software 

SC Soil type dominated by sandy soils overlain by clayey soils 

SPT Standard penetration test 

t Mobilized soil adhesion 

tmax Unit skin friction capacity 

t-z curve Axial load transfer relationship 

Tapp Apparent wave period 

Tp Peak period 

Tz Mean zero-crossing period 

V Current speed 

W Wind Load 

WSD Working Stress Design 

Wn Nominal wind load 

Wram Hammer ram weight 

x and y Normalized spatial variables ranging from zero to one 

X and Y Dimensions to define tributary area for a column or a pile 

z Local pile deflection 

αn Dispersion parameter 

βT Target reliability index 
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