The Census of Warm Debris Disks in the Solar Neighborhood from *WISE* and *Hipparcos*

Rahul I. Patel
Stony Brook University

The Graduate School

Rahul Indrakant Patel

We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation

Stanimir Metchev - Dissertation Advisor
Adjunct Professor, Department of Physics and Astronomy

Michael Zingale - Chairperson of Defense
Associate Professor, Department of Physics and Astronomy

Matthew Dawber - Committee Member
Associate Professor, Department of Physics and Astronomy

Rebecca Oppenheimer - External Member
Curator, Professor, and Chair, American Museum of Natural History

This dissertation is accepted by the Graduate School

Charles Taber
Dean of the Graduate School
Debris disks are optically thin circumstellar disks around main-sequence stars, comprised of micron-sized grains. The dust is generated from destructive collisions of planetesimals, induced from gravitational perturbations by large planets. Debris disks can act as signposts for planetary systems, through which, a universal picture can be obtained that encompasses the evolution and architecture of the Solar System’s own dust disk and planetary system. The dust in these disks can be detected by their thermal infrared flux, measured as an excess above the photospheric emission. Dust at different circumstellar locations, inferred from the peak wavelength of the detected emission, can act as a probe for local dynamical activity in the system. Over the last thirty years, cold disks, analogous to the Kuiper Belt, have constituted the bulk of debris disk detections. Warm disks, analogous to the Main Asteroid belt, can act as signposts for dynamical activity in the terrestrial planet...
zone, but are rare in contrast. The Wide-Field Infrared Survey Explorer (WISE) space telescope mapped the entire sky in two near-IR and two mid-IR bands in 2012. The two mid-IR bands are well placed to probe dust emission in the terrestrial planet zone of these stars, at sensitivities greater than the last all-sky IR survey in 1983. WISE also provides us for the first time an opportunity to contemporaneously measure the photospheric and IR excess wavelengths of the entire sky, increasing sensitivity to fainter levels of dust.

In this thesis, I present an unbiased survey of warm disks around main-sequence Hipparcos stars in the solar neighborhood, detected using data from the WISE All-Sky Database. Our series of surveys builds upon each other to find previously undetected faint, warm debris disks by including bright photometrically saturated stars in WISE, using empirical photospheric colors, removing several non-trivial false-positive sources, and verifying and validating these detected excesses. This thesis adds a substantial number of new disk targets to the census of debris disks, as well as an assessment of the incidence rate of WISE disks in the solar neighborhood. The number and rate of detections can ultimately aid in enhancing our understanding of the formation and evolution of planetary systems.
To my family.
Contents

List of Figures ix
List of Tables xii

1 Introduction 1
 1.1 Solar System Context ... 1
 1.2 The Solar System’s Debris Disk 4
 1.2.1 Current Configuration 4
 1.2.2 Dynamical Evolution Of Our Planetary System 6
 1.3 Circumstellar Disk Evolution 7
 1.3.1 Protoplanetary Disk Evolution 7
 1.3.2 Debris Disk Evolution 10
 1.4 Detecting Debris Disks ... 14
 1.4.1 Dust Thermal Emission 14
 1.4.2 Infrared Excess and Resolved Imaging 16
 1.4.3 Is It A Protoplanetary Or A Debris Disk? 18
 1.5 Debris Disks as Signposts for Planets 19
 1.6 Evolving Picture of Debris Disks Over Thirty Years 23
 1.6.1 Cold Disk Detections 24
 1.6.2 Warm Disk Detections 28
 1.6.3 Disk Evolution: Stochastic or Steady-State? 30
 1.7 What Is Missing? .. 31

2 Detecting Debris Disks with the Wide-Field Infrared Survey Explorer 33
 2.1 Limitation of Past Surveys 33
 2.2 The Wide-Field Infrared Survey Explorer
 Mission .. 35
 2.2.1 Mission Overview ... 35
 2.2.2 WISE Bands ... 37
 2.2.3 WISE Data Releases 37

vi
2.2.4 Cautionary Tales of WISE Data .. 39
2.2.5 Advantages Of Using WISE Over Other Space Telescopes To Find Debris Disks 43
2.3 Detecting Thermal Emission From Debris Disks with WISE 45
 2.3.1 The WISE Color Excess Technique and its Advantages 45
2.4 Previous WISE Debris Disk Studies 48

3 Identification of Warm Debris Disks Within 75 pc 50

4 Improved Methods to Verify WISE Debris Disks With Weighted Colors and unWISE Images 77
 4.1 Introduction .. 77
 4.2 Sample Definition .. 80
 4.3 Single-Color and Weighted Color Excesses 81
 4.3.1 Improved Detection of Single-Color Excesses 81
 4.3.2 Defining A New Weighted IR Excess Metric 84
 4.3.3 Weighted Color Excesses 85
 4.4 Automated Rejection of Contaminated Stars Using Reprocessed WISE Images 86
 4.4.1 Checking for Contaminants In unWISE Images 86
 4.4.2 Rejecting Astrometric Contaminants 87
 4.4.3 Rejection Fidelity .. 90
 4.5 Results ... 94
 4.5.1 New Candidate Debris Disks 95
 4.5.2 Confirmations of Previously Known 22µm Faint Debris Disks 98
 4.6 Discussion ... 100
 4.6.1 Single vs. Weighted Color Excess Search 100
 4.7 Conclusion .. 102

5 Identification of Warm Debris Disks in the Galactic Plane and Out to 120 pc 110
 5.1 Introduction .. 110
 5.2 Sample Selection .. 111
 5.2.1 Culling the Parent Sample via unWISE Images 112
 5.3 IR Excess Identification .. 115
 5.4 Results ... 116
 5.5 Discussion ... 118
 5.5.1 Survey Sensitivity .. 118
 5.5.2 Overall Expansion of Disk Census 120
List of Figures

1.1 Exoplanet Statistics ... 2
1.2 First Resolved Debris Disk: β Pictoris 3
1.3 Illustration of the Solar System Architecture 4
1.4 Zodiacal Light Emission From Planck 5
1.5 Zodiacal Light From Earth 5
1.6 Protoplanetary and Debris Disk Masses Over Time 8
1.7 Evolution of a Disk .. 9
1.8 Evolution of Protoplanetary Disk Fraction 11
1.9 Poynting-Robertson Drag Timescales 12
1.10 SED of Generic Disk System 17
1.11 β Pictoris Disk and Planet 21
1.12 Simulation of Giant Planets Imprinted on Solar System Disk .. 22
1.13 Illustrating Dust Location and Wavelength 23
1.14 SEDs of Fab Four Disks 26
1.15 Evolution of 24μm Excesses 29
2.1 Sensitivity Limits of Cold Disk Surveys 34
2.2 WISE Satellite ... 36
2.3 WISE Sky Coverage .. 37
2.4 WISE Bands ... 38
2.5 Contamination from 2MASS Extended Source. 40
2.6 Contamination from Optical Artifacts 41
2.7 Contamination from Scattered Moon Light 42
2.8 All-Sky IR Sensitivities 44
2.9 Resolution of WISE vs. IRAS 45
2.10 Survey Disk Detection Limits 46
4.1 Weighted $W3$ and $W4$ Color Excess Distributions 82
4.2 Improved Method To Determine Σ_{ECL} and Σ_{ECL} ... 83
4.3 $W3$ vs. $W4$ Astrometric Analysis with unWISE 88
4.4 $W4$ vs. $W4$ Astrometric Analysis with unWISE 89
4.5 Postage Stamp Images of Stars Rejected from W3 vs W4 Astrometric Analysis ... 92
4.6 Postage Stamp Images of Stars Rejected from W4 vs W4 Astrometric Analysis .. 93
4.7 SEDs of Newly Detected Excesses .. 96
4.8 Venn Diagram Comparing Single-Color and Weighted-Color Detections. .. 100
4.9 Distribution of WISE Photometric Uncertainties. 101
4.10 Excess Significances for Stars with Single-Color Excesses and Insignificant Weighted-Color Excesses 103

5.1 Rejected unWISE Stars Using W3-to-W4 Offsets 113
5.2 Rejected unWISE Stars Using W4 to W4 Offsets 114
5.3 Distribution of ΣE_{W3-W4} in 120 pc 117
5.4 Our Survey Flux Sensitivity .. 119
5.5 Incidence of Excesses Within 120 pc .. 120
5.6 Comparison of All Known Debris Disks To Those Detected by WISE .. 121

6.1 My WISE Disks vs. Other WISE Disks .. 140
6.2 WISE All-Sky Synthetic vs. Empirical Colors. 142

D.1 SEDs of Excesses for Stars in 75 pc. I 181
D.2 SEDs of Excesses for Stars in 75 pc. II 182
D.2 SEDs of Excesses for Stars in 75 pc. III. 183
D.2 SEDs of Excesses for Stars in 75 pc. IV 184
D.2 SEDs of Excesses for Stars in 75 pc. V 185
D.2 SEDs of Excesses for Stars in 75 pc. VI 186
D.2 SEDs of Excesses for Stars in 75 pc. VII 187
D.2 SEDs of Excesses for Stars in 75 pc. VIII 188
D.2 SEDs of Excesses for Stars in 75 pc. IX 189
D.2 SEDs of Excesses for Stars in 75 pc. X 190
D.2 SEDs of Excesses for Stars in 75 pc. XI 191
D.2 SEDs of Excesses for Stars in 75 pc. XII 192
D.2 SEDs of Excesses for Stars in 75 pc. XIII 193
D.2 SEDs of Excesses for Stars in 75 pc. XIV 194
D.2 SEDs of Excesses for Stars in 75 pc. XV 195
D.2 SEDs of Excesses for Stars in 75 pc. XVI 196
D.2 SEDs of Excesses for Stars in 75 pc. XVII 197
D.2 SEDs of Excesses for Stars in 75 pc. XVIII 198
D.2 SEDs of Excesses for Stars in 75 pc. XIX 199
D.3 SEDs of Excesses for Stars from 75–120 pc. I. 201
D.3 SEDs of Excesses for Stars from 75–120 pc. II. 202
D.3 SEDs of Excesses for Stars from 75–120 pc. III. 203
D.3 SEDs of Excesses for Stars from 75–120 pc. IV. 204
D.3 SEDs of Excesses for Stars from 75–120 pc. V. 205
D.3 SEDs of Excesses for Stars from 75–120 pc. VI. 206
D.3 SEDs of Excesses for Stars from 75–120 pc. VII. 207
D.3 SEDs of Excesses for Stars from 75–120 pc. VIII. 208
D.3 SEDs of Excesses for Stars from 75–120 pc. IX. 209
D.3 SEDs of Excesses for Stars from 75–120 pc. X. 210
D.3 SEDs of Excesses for Stars from 75–120 pc. XI. 211
D.3 SEDs of Excesses for Stars from 75–120 pc. XII. 212
D.3 SEDs of Excesses for Stars from 75–120 pc. XIII. 213
D.3 SEDs of Excesses for Stars from 75–120 pc. XIV. 214
D.3 SEDs of Excesses for Stars from 75–120 pc. XV. 215
D.3 SEDs of Excesses for Stars from 75–120 pc. XVI. 216
D.3 SEDs of Excesses for Stars from 75–120 pc. XVII. 217
D.3 SEDs of Excesses for Stars from 75–120 pc. XVIII. 218
D.3 SEDs of Excesses for Stars from 75–120 pc. XIX. 219
List of Tables

1.1 *Spitzer* Specifications: 85 cm Primary Mirror. 24
1.2 *Herschel Space Observatory* Specifications: 3.5 m Primary Mirror. 25
1.3 *IRAS* specifications: 0.6 m primary mirror. 25

4.1 Single- and Weighted-Color Excess Selection Summary 105
4.2 IR Excess Information for Newly Identified Debris Disk Candidates from *WISE* .. 106
4.3 Rejected *WISE* Excesses .. 107
4.4 Stellar Parameters of New Excess Stars from Improved Methods 108
4.5 Disk Parameters from Blackbody Fits of Excesses from Improved Methods in 75 pc. ... 109

5.1 Rejected *WISE* Excesses in 75–120 pc Volume 124
5.1 Rejected *WISE* Excesses in 75–120 pc Volume 125
5.2 Stellar Parameters of *W4* Excess Hosts within 120 pc 126
5.2 Stellar Parameters of *W4* Excess Hosts within 120 pc 127
5.2 Stellar Parameters of *W4* Excess Hosts within 120 pc 128
5.2 Stellar Parameters of *W4* Excess Hosts within 120 pc 129
5.2 Stellar Parameters of *W4* Excess Hosts within 120 pc 130
5.2 Stellar Parameters of *W4* Excess Hosts within 120 pc 131
5.2 Stellar Parameters of *W4* Excess Hosts within 120 pc 132
5.3 Disk Parameters from Blackbody Fits and Excess Information for Stars within 120 pc ... 133
5.3 Disk Parameters from Blackbody Fits and Excess Information for Stars within 120 pc ... 134
5.3 Disk Parameters from Blackbody Fits and Excess Information for Stars within 120 pc ... 135
5.3 Disk Parameters from Blackbody Fits and Excess Information for Stars within 120 pc ... 136
5.3 Disk Parameters from Blackbody Fits and Excess Information for Stars within 120 pc ... 137
Acknowledgements

Deshi Basara Basara, Deshi Basara Basara.
— The Dark Knight Rises.

I have determined that I would rather write five more theses than another sentence in the acknowledgements. It has taken me much longer to finish this section — which I started after defending — than to write the entirety of Chapter 5. This is not because I don’t want to get sentimental or that I have too many people to thank, though both are true. It’s because writing the words “supportive” and “thankful” became repetitive and I started perusing the thesaurus too often. However, I then remembered that Mike Simon once said that “if a fifty cent word works, then don’t use a fifty dollar one.” So, what you will read here are plain words of the gratitude I feel toward all those who have shared in my triumphs and tribulations these past few years.

First and foremost, I would be ridden with Canadian guilt if I did not thank my advisor, Stanimir Metchev. Stan’s guidance, encouragement, patience, and passion for astronomy have sculpted me into the astronomer and scientist I am today — though I know I still have much to learn. He has shown me that there are no shortcuts, and hard work bears its own fruit. At the same time, he has also shown me that it is important to relax, especially when encountering border patrol agents in Arizona after an observing run. I would also like to thank Aren Heinze and Joe Trollo, both of whom have provided insightful ideas, and helped me improve my analytical and statistical skills. Their expertise, insight and constant willingness to help have been invaluable to me throughout this thesis.

I would like to thank all of my committee members for reading my thesis and guiding me to the final product. I want to thank Michael Zingale for acting as chair of my committee, helping me improve in areas where I was weak, for all the fun morning discussions and letting me graduate even though I was not able to discover five new planets. I would also like to thank Rebecca Oppenheimer for serving on my committee, her invaluable guidance, and tremendous amount of encouragement and support over these last few years. I would also like to thank Matthew Dawber for serving on my committee, as well as making first year bearable in the TA labs. I would like to thank Tom Weinacht for his support, and serving on my committee early on. In addition, I would like to especially thank Bruce Macintosh for his support and allowing me to take part
in the outstanding work being done by the Gemini Planet Imager Exoplanet Survey.

The astronomy group at Stony Brook has been especially welcoming and supportive during my time there. This includes Alan Calder for all the helpful life lessons, Mike Simon for all the Yiddish tutorials, and Jin Koda for somehow predicting where I would end up for my first postdoc. I would also like to give many thanks to Josh S. who helped me navigate my way through my first year of research, Brendan who was constantly willing to share his expertise in both academics and sci-fi lore and Chris who kept me on my feet about all the good music of which I had never heard. Without these three, I would have had a much more difficult time staying afloat. My friends in the astronomy group also deserve my appreciation and thanks. Mel, Mathew, Don, Stephka, Adam, Kendra, Max, and Melissa were responsible for making the workplace a lot of fun to be in, and I am grateful for the support they have shown me, and their immeasurable tolerance in dealing with me. This includes all of my office singing, desk drumming (sorry Melissa), and the inane arguments that Max and I would find ourselves in.

Graduate school is a long and arduous road, which is why I am grateful that I did not have to travel it by myself. I would first like to thank Socoro, Sara and the wonderful staff in the physics department. Never again will I have the opportunity nor privilege of working with such a friendly and helpful group of people. To Jeremy, Omer, Josh I., Shawn, and Humed — I could not have asked for a crazier, kinder, and better set of friends/roommates than you guys. I would definitely have lost my mind had it not been for all the late-night homework parties, P90X “parties”, and just plain old awkward social parties. I would like to make sure that David knows that had it not been for him I would not have applied to Stony Brook. In a sense, David, all of this is thanks to you. I think that also means that if I mess up, I can blame you for it too. I am also grateful for having met so many wonderful people whom I can continue to call friends and whose support has been unwavering. Among them is my “adopted” cousin Betül, Cip, Karen, Ahsan, Oumarou, Aungshuman, Morgan, Nathan, Heli, Kim, and Wendy.

Of course, thanks to my family and their upbringing and encouragement, I would not have had the courage to undertake this insane yet rewarding endeavor. To my brother Pranav, though we are in different places right now, I want to thank you for showing me the worst is not enough to bring you down. I have also found purpose in my work whenever I see the awe and wonderment in the eyes of Calen, Ella, and Nithya. I want to thank Shaunbhai for all the experienced advice while I was applying for jobs. I would also like to thank Shaunbhai, Roshniben, Sheetalben, Niravjija, Mehuljija, and Mithubhabhi for
their love, support, and being there to talk when I needed it. To my sister and brother-in-law, Vaishali and Suraj, and my parents, Indrakant, Daxa, Ghanshyam and Jyoshna: no words can describe the heartfelt gratitude I have for all that you have done for me and the unwavering and unconditional love and support you have given me, especially when I didn’t want it but totally needed it. Last of all, to Yuki – thank you for being by my side these last two years and for sharing in my joys, childish antics, and absorbing my over-inflated imposter syndrome. They tell me that I’m a scientist now, so I intend to test out how much more of my insanity you can handle in the future.

I would also like to thank the McNair Fellowship program at FIU, in particular to Dr. Simms for the opportunity of pursuing a graduate career. This thesis makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. We also use data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research has also made use of the SIMBAD database, operated at CDS, Strasbourg, France. This research has made use of the Double Star Catalog maintained at the U.S. Naval Observatory. Most of the original figures in this work were created using Matplotlib, a Python graphics environment (Hunter, 2007). This research also made use of APLpy, an open-source plotting package for Python hosted at http://aplpy.github.com (Robitaille & Bressert, 2012). This work is partially supported by NASA Origins of Solar Systems through subcontract No. 1467483 to Dr. Stanimir Metchev at Stony Brook University, and by an NSERC Discovery award to Dr. Stanimir Metchev at the University of Western Ontario. I would also like to thank the Astrophysical Journal, Astronomy and Astrophysics Journal, the Journal Science, and the Annual Reviews in Astronomy and Astrophysics for allowing me to reproduce figures from some of their copyrighted publications.
Chapter 1

Introduction

1.1 Solar System Context

Since the discovery of the first extrasolar planets (exoplanets) around a main-sequence star, (HD 114762 b and 51 Pegasi b, Latham et al., 1989; Mayor & Queloz, 1995, respectively), a revolution has occurred in our understanding of planetary formation and evolution. We have seen exoplanets of a variety of flavors: gas giants at fractions of an astronomical unit (AU) from their star, binary planetary systems and even compact multi-planet systems. Giant planets are found with eccentricities ranging from 0–0.9, with sometimes large mutual inclinations. And roughly 50% of solar type stars have a chance of hosting a compact multi-planet system with periods shorter than a year (see review by Winn & Fabrycky, 2015).

In contrast, the planets in our Solar System follow nearly circular, low inclination orbits at distances such that terrestrial and gas giants are separated by the snow-line (see §1.2.2). Since this Solar System is the only one we know of where a planet can sustain life, perhaps the key to finding another is to search for systems with similar architecture. Of course there are a few exoplanetary systems that may seem architecturally similar to our own. The HR 8799 multi-planet system is an excellent example, where the system’s four gas giant planets are at the same equilibrium temperature as our gas giants are to our Sun (Marois et al., 2010).

But this is one in a multitude of over a thousand planets we have uncovered. And if the majority of planets we are finding do not resemble the architecture of the Solar System, we have to ask: Is the existence of another habitable planet likely? If so, how can we identify a system whose interplanetary environment would increase the habitability of an Earth analog?

Over the last thirty years, we have seen that exoplanetary systems can also
Figure 1.1: Distribution of exoplanet masses vs. their estimated orbital distance and color coded based on the technique used to detect them. This plot only shows exoplanets detected as of June 2015. Only planets with catalogued masses and orbital distances were plotted. $M \sin(i)$ values were used when exact values for the planet mass were unavailable. Solar System data is also plotted. Data was downloaded from http://exoplanetarchive.ipac.caltech.edu/. Credit: R. Patel.
Figure 1.2: Resolved disk emission around the β Pictoris star. First ever resolved image of a debris disk. The image was taken using a coronagraph at the Las Campanas observatory in Chile. The disk is edge-on and composed of solid particles. The flattened shape, rather than a spherical shell of particles is circumstantial evidence of planet formation. The circular shape in the center is due to the coronagraph and imperfect subtraction of the standard star. Image credit: Smith & Terrile (1984). Reprinted with permission from AAAS.

be identified by the presence of any dusty disks orbiting a main-sequence star. The first unresolved detection of extrasolar debris disks was by the *Infrared Astronomical Satellite (IRAS)* in 1983 of the Vega debris disk (Aumann et al., 1984). Further evidence from resolved images was taken by Smith & Terrile (1984) of the debris disk around the β Pictoris system and galvanized the idea of these disks, which are created from the collisional grinding of planetesimals, are stirred by large planets (see Figure 1.2). Given that evidence exists that our own Solar System is a result of the concurrent evolution of our circum-solar disk and planets, then perhaps similarities can be drawn between what our circumstellar disk looked like at different stages in its evolution and the extrasolar debris disks astronomers have detected over the last thirty years.

Another way to investigate this is to ask: is the likelihood of a system like ours — and hence the possibility of life — linked with the evolution of the disk and planets as a whole?

This thesis takes a step toward investigating these questions by identifying additional systems which have previously been overlooked and may hold a wealth of information with which to place our Solar System in context.
1.2 The Solar System’s Debris Disk

1.2.1 Current Configuration

The eight planets in the Solar System follow a relatively ordered configuration. With the exception of Mercury, the orbits are close to circular, and are closely inclined to the invariable plane, where inclination angles range from 0.33° to 2.19°. The four rocky planets are located interior to 1.7 AU, while the four gas giant planets are located beyond the snow-line — the point in relation to the Sun beyond which volatile molecules (e.g., H_2O, CH_4) condense — and all the way out to 30 AU.

The inner and outer planets are also segregated by a disk of material known as the Main Asteroid Belt (MAB). Located between the orbits of Mars and Jupiter, the MAB is composed of over a million kilometer-sized objects that can be metallic, stony or even carbon rich in composition.

It has been estimated that the mass of the MAB is $\sim 0.04M_{\text{moon}}$, but was much larger in the early Solar System (see § 1.2.2). Beyond the orbit of Neptune lies a large reservoir or minor planets composed of icy, volatile, cometary material with sizes greater than 1 km. These minor bodies, distributed in a thin belt the width of 20 AU, are known as the Edgeworth-Kuiper Belt (EKB).

![Figure 1.3: An illustration of the Solar System’s planets, and major dust belts. Rough equilibrium temperatures are indicated at distances from Earth, Jupiter, and the inner edge of the EKB. The vertical positions of the planets relative to the Earth-Sun plane indicate rough inclinations. Distances and sizes are not to scale. Image credit: R. Patel.](image)

In addition to the rings of large rocky bodies, a population of 10–100μm sized cometary and silicate grains inhabits the Solar System. This disk, known as the Zodiacal Cloud, has been seen in scattered light observations (Hahn et al., 2002), thermal emission from the Planck (Maris et al., 2006; Planck Collaboration et al., 2014), COBE (Kelsall et al., 1998), and the IRAS (Sykes,
Figure 1.4: Galactic coordinate projection of the sky in the 850 GHz band from the Planck Satellite. The Zodiacal light emission is seen passing diagonally from the lower left to the top right, crossing the middle of the galactic plane. The top and bottom arcs are due to instrumental far side lobes. Image credit: (Planck Collaboration et al., 2014).

Figure 1.5: A faint glow seen along the ecliptic reveals the presence of 100µm sized grains that comprise the Zodiacal Light. Image credit to the European Southern Observatory. Image was taken at Cerro Paranal, Chile http://www.eso.org/public/unitedkingdom/images/zodiacal-light/
missions, as well as inferred from spacecraft impact experiments. From the ground, the Zodiacal Cloud can be seen only on the darkest of nights, as a faint glow along the ecliptic (see Figure 1.5). The inner Zodiacal Cloud extends from the orbit of Venus all the way out to Jupiter. From most recent studies, it is thought that mm–cm sized grains are ejected from Jupiter Family Comets (JFC) as they approach the large tidal forces of Jupiter’s gravity. The smaller sub-mm sized grains, which comprise the disk are thought to be created from the grinding down of the larger mm–cm sized ejected grains. The overall mass of the inner Zodiacal Cloud has been estimated to be $\sim 1 - 2 \times 10^{19}$ g (Nesvorný et al., 2010). The Zodiacal Cloud’s density is so low that the overall disk brightness, when compared to the total emission of the Sun at all wavelengths (bolometric luminosity) is $L_{\text{ZODY}} / L_{\odot} \sim 2 \times 10^{-7}$ (Nesvorný et al., 2010).

1.2.2 Dynamical Evolution Of Our Planetary System

The combined evolution of the planets, asteroidal and cometary disks are responsible for the current state of the Solar System. It is generally accepted that all the planets formed within the first 100 Myr (upper limit based on the final accretion time to create Earth; Allègre et al., 2008), after the Sun reached its place on the main-sequence. During this time, it has been hypothesized that the planets were in a compact configuration, all of them residing within 15 AU of the Sun (Batygin & Brown, 2010). Roughly 4.0–3.7 Gyr ago, scattering of the planetesimal populations that lay outside the orbit of Neptune at 15 AU resulted in angular momentum exchange between the gas giants and the disk. This led to a period of instability in which Jupiter and Saturn’s orbits diverged, and eventually crossed their mutual 1:2 mean motion resonance. From this, Jupiter migrated inward by < 0.5 AU (Morbidelli et al., 2010), and pushed Saturn, Uranus and Neptune further out into the Solar System (Tsiganis et al., 2005).

This migration led to a period known as the Late Heavy Bombardment (LHB). During this time, Jupiter’s short migration would have depleted the MAB by a factor of 10, while 97% of the EKB was probably removed as a result of Neptune’s outward migration. The scattered comets and asteroids during this period are most likely responsible for the Lunar craters we see today (Gomes et al., 2005). It is also thought that a fraction of Earth’s water supply was transported during the LHB either from the EKB or from water rich asteroids. In addition, the depletion of the MAB by Jupiter has implications for the emergence of life on Earth, as a massive MAB today might have resulted in a higher frequency of Terrestrial impacts. In essence, we would like to investigate the relationships a planetary system may have with its environment, similar to the evolution due to dynamical friction in our planet-disk...
system, around other star systems.

1.3 Circumstellar Disk Evolution

Understanding the physical nature and processes governing the evolution of circumstellar disks is important if we are to understand the similarities between other systems and our own disk throughout its lifetime. In this section, I briefly outline the properties and characteristics of young gas-rich protoplanetary disks and their evolution into a dusty debris disk.

1.3.1 Protoplanetary Disk Evolution

The paradigm of planet formation begins with a nascent protoplanetary disk (PPD), composed of primordial gas and dust that remains post-star formation. The primordial material forms into a circumstellar disk, as a consequence of angular momentum conservation. The final radial extent of the disk is heavily sensitive to the angular rotation of the central star (Ω^2) and even more sensitive to the infall time of the primordial material (t_{infall}^{-3}; Terebey et al., 1984). It is well accepted that 90–99% of a PPD is composed of gas, while the rest is made of micron to millimeter sized-dust grains.

The bulk of the gas is comprised of neutral H$_2$. Though difficult to measure, mid-IR rotational lines have been observed from hot (> 600 K) H$_2$ from the ground in systems like AB Aurigae (Bitner et al., 2007). Typically, however, tracers such as CO, and HCN line emissions are observed at sub-mm wavelengths to detect the gas in PPDs (e.g., for stars in young associations such as Ophiuchus and Taurus-Auriga, Andre & Montmerle, 1994; Beckwith et al., 1990, respectively). These observations have shown that the size of these disks can range from 10–100 AU, with masses >0.005 M_\odot (Osterloh & Beckwith, 1995). Dust masses are typically derived from dust thermal emission at mm-wavelengths, which probe the large grain population. The masses are typically derived by assuming an upper limit to the grain size (usually around mm sizes) and some assumed opacity values (Beckwith et al., 1990). Figure 1.6 shows the masses of observed PPDs (ages < 10 Myr), indicating disk masses on the order of a few hundred M_earth.

The majority of the primordial gas and dust dissipates within the first ~10 Myr. Viscous accretion of gas and dust onto the star has been attributed to the clearing of the inner regions (a few AU) of the star, which is supported by a lack of near-IR flux (2–5μm) and the presence of forbidden line accretion signatures (e.g., OI, SII; Hartigan et al., 1995). Photoevaporation from the central star will also carve out the outer disk. In this process, high-energy UV