IS AN OBJECTIVE MEASURING SYSTEM FOR FACIAL ATTRACTIVENESS POSSIBLE?

MOUNIR BASHOUR, MD, CM, PHD, FRCSC, FACS
Is an Objective Measuring System for Facial Attractiveness Possible?

Mounir Bashour
Is an Objective Measuring System for Facial Attractiveness Possible?

MOUNIR BASHOUR, MD, CM, PhD, FRCSC, FACS

A thesis originally submitted in conformity with the requirements for the degree of Doctor of Philosophy

Institute of Medical Sciences in collaboration with
Institute of Biomaterials and Biomedical Engineering
University of Toronto

© Copyright by Mounir Bashour 2005, 2007
Abstract

There exists a need for the creation of an objective system for measuring facial attractiveness and along with it a detailed mathematical analysis and understanding of facial sexual dimorphism. Both the areas of ophthalmic and facial plastic and reconstructive surgery and the areas of facial attractiveness and recognition research in psychology would greatly benefit from achieving these goals. The objective of this work has been to: develop and test a system for measuring facial attractiveness in an objective manner; and analyze orbital and facial sexual dimorphism.

A facial overlay system or mask variously called the phi, archetypal, golden, or golden ratio mask has been claimed to be capable of being adapted to create an objective system for measuring facial attractiveness. The central hypothesis of the thesis is that the phi mask can be used to create an objective measurement system for facial attractiveness.

Over a period of seven years, we have created a standardized high resolution photographic facial database of 18-30 year old male and female adults, as well as database of linked facial anthropometric and photogrammetric measurement data. We have also designed a system using the phi mask that attempts to measure facial attractiveness objectively, and tested it against our facial database. Finally, we have made a detailed analysis of the measurement data and previous literature with respect to precisely defining sexual dimorphism around the eyes and face.

Results support our central hypothesis in that the phi mask in its current form does yield a measure for objective attractiveness that correlates to the current “gold standard” measure of attractiveness – ‘truth of consensus’. However, while the mask is capable of explaining a major portion of the variance in facial attractiveness, it is not the final complete answer. Strengths, weaknesses and limitations of the approach and the model used are discussed, and ideas and directions for further research to develop a more accurate system are suggested.

The analysis of the orbits and the face for sexual dimorphism yielded a great deal of new data and have lead to an understanding of sexual differences that have practical implications for both surgery and further facial research.

Applications of the research include: Preoperative aids for planning plastic and reconstructive surgery, cosmetic surgery, and sex-altering surgery; standards for analyzing the eyes for academic study; standards for quantifying the features of the eyes for use in an identification system; aid in application of cosmetics; aid in understanding the psychological impact of eyes on the judgment of attractiveness; creation of a standardized database of digital high-resolution facial photographs and linked anthropometric and demographic database to be made available to the world community of facial researchers; use of the databases by researchers for face recognition research, facial attractiveness research etc.
Publications

Chapter 1 and Appendix A – contain elements from

Chapter 2 – contains elements from

Bashour, M. An objective system to measure facial attractiveness. Plast Reconstr Surg. 2006 Sep;118(3):757-74; discussion 775-76.

Chapters 3 – contains elements from

Appendix I – contains an early draft of

I am responsible for all material reported in this dissertation and all data collection, except for data collected by Dr. Leslie Farkas and used with his permission and appropriately cited in every instance and various cited excerpts in the Appendicies.
Acknowledgments

This study was partially funded by a scholarship from the Natural Sciences and Engineering Research Council of Canada. All methodology was approved by the Ethics Review Committee of the University of Toronto. Thank you to the Institute of Biomaterials and Biomedical Engineering, Institute of Medical Sciences and Department of Ophthalmology for resources and cooperation. I thank Drs. Martin Steinbach and Morris Moscovitch for being part of my supervisory committee, and for generously providing guidance, support and editorial comments.

I would especially like to thank Dr. Hans Kunov for taking a risk on an unknown surgeon while providing him with the opportunity to study and experience the intricacies of the human face. I know that I have tested your patience during my time here by continuing to work full-time as a professional surgeon and as a result taking an extremely long time to complete this PhD, so long in fact that you had retired yourself by the time I was done.

A special thank you goes as well to the great Dr. Leslie Farkas whom many researchers term the father of modern anthropometrics. You gave me your wise counsel and shared with me your 50 years experience of this field in which I am but a youngling. You inspired me more than you can know, simply by my watching you in your mid 80’s still publishing three or more papers a year in the field, and maintaining a sharp, fresh and excited perspective. You are truly an amazing man.

I want to thank Shavir Irani for his help in recruiting subjects for the study and in help morphing some of the male faces, and his brother for help in creating the Internet survey system.
I want to thank all my family and friends – as I have always said in the final analysis after everything is tallied “absolutely, nothing is more important than family and friends.” Thank you to my parents -- you never told me “Stop already! Don’t you already have too many degrees” as many others have, but rather you always encouraged my ever seeking mind. Thank you to my sister for being my best friend for so many years. Thank you to my nieces for reminding me to look at the world with innocent eyes. Thank you to all my friends all over the world, you are too many to mention all by name, but you know who you are! A special thank you to my mates from Flat 510 Graduate House -- Dan, Matt, and Nick; the three of you more than anyone gave me the sensation of the graduate life, and I hope we remain friends forever.

I want to offer a general thank you to all the people in the many levels of the University of Toronto structure that I have questioned, pestered, and challenged to allow me to finish this PhD while working at a full-time and arduous job.

Thank you to my perpetual puppy Princess for forcing me to remember to play instead of constantly working on this thesis. Finally, thank you to my wife Christina, for your never ending support, and particularly for the tremendous amount of work helping me with data entry and putting the last touches to this work. We met during the final 3 years of my PhD; and you endured the difficult trek through the writing of this dissertation, I hope now, we can bask in the afterglow.

I dedicate this dissertation to my parents Samir and Hiyam, my wife Christina and my sister Maya.
Table of Contents

Abstract... ii
Publications.. iii
Acknowledgments.. iv
Table of Contents... vi
List of Tables ...viii
List of Figures ... x
Chapter 1 - General Introduction .. 1
Chapter 2 - An Objective System to Measure Facial Attractiveness.. 46
Chapter 3 - Facial Sexual Dimorphism Attractiveness... 73
Chapter 4 - General Discussion .. 140
References... 166
Appendix A - The History of Analysis of Facial Attractiveness .. 179
Appendix B - Definitions of Beauty and Attractiveness .. 207
Appendix C - The Golden Ratio .. 212
Appendix D - The Phi Mask .. 220
Appendix E - Anthropometry and the Phi Mask ... 240
Appendix F - Photogrammetry and our Standardized Procedure .. 254
Appendix G - Anthropometric Points.. 257
Appendix H - Methodology of Literature Search.. 261
Appendix I - Is Medial Canthal Tilt the Most Important Cue for Facial Attractiveness? 263
Appendix J - Head Positions.. 268
Appendix K - Consent Form for Photograph Models In Face and Eyes – Mathematics, Aesthetics,
Anthropometrics ... 270
Appendix L - Model Release Agreement ... 273
Appendix M - Ethics Approval University of Toronto ... 275
List of Tables

Table 1 - OVERALL SIZE -- Percentage difference between male and females for all measurements used in creating averages for 19-25 year olds and 6 year olds (calculated by Bashour using data from Farkas[3])... 80

Table 2 - HEAD REGION -- Percentage difference between male and females for all 15 Head region measurements for 19-25 year olds and 6 year olds (calculated by Bashour using data from Farkas[3]). 85

Table 3 - FACE REGION -- Percentage difference between male and females for all 31 Face region measurements for 19-25 year olds and 6 year olds (calculated by Bashour using data from Farkas[3]). 87

Table 4 - NOSE REGION -- Percentage difference between male and females for all 28 of Farkas’s Nose region measurements for 19-25 year olds and 6 year olds (calculated by Bashour using data from Farkas[3])... 89

Table 5 - LIPS & MOUTH REGION -- Percentage difference between male and females for all 18 Lip and Mouth region measurements for 19-25 year olds and 6 year olds (calculated by Bashour using data from Farkas[3])... 92

Table 6 - EAR REGION -- Percentage difference between male and females for 18 Ear region measurements for 19-25 year olds and 6 year olds (calculated by Bashour using data from Farkas[3]). 94

Table 7 – EYE REGION - Percentage difference between male and females for all 21 Farkas Orbital region measurements for 19-25 year olds and 6 year olds (calculated by Bashour using data from Farkas[3]) and for new measures by Bashour colored in blue.. 97

Table 8 – Central eyebrow thickness and eyebrow height Farkas versus Bashour 100

Table 9 - Eyebrow measures adapted from Oestreicher and Hurwitz184 where n = 76 (46 females, 30 males) and average age was 55.91 with range from 22 to 88 years old. .. 105

Table 10 - Percentage difference between male and females for pretarsal skin, eyebrow, and eyelid
crease height measurements (calculated by Bashour using data from Cartwright et al) 110

Table 11 - Eyebrow Arch Positions in the medical literature .. 112

Table 12 - Eyebrow Arch Angles for Males and Female 18-30 year olds ... 117

Table 13 - IPD percentage difference between males and females for children and adults 126

Table 14 - Orbital proportion indices change with age and sex .. 134

Table 15 – Facial features whose variations away from the phi mask prototype most impact perception of attractiveness .. 147

Table 16 - Comparison of descriptive frequencies for average male and female attractiveness from combined arm survey .. 153

Table 17 - How often do the neoclassical canon proportions occur in real life? 189
List of Figures

Figure 1 - Characteristic points defining the aging parameters. ... 5
Figure 2 - General aging curves for (a) the eyelids; (c), (d), (e), and (b) the central and lateral pouches of the face; (f) width of the nose. ... 7
Figure 3 - General aging curves for (a) the height of the lips; (b) and (c) central and lateral height of the forehead; (d) height of the nose; (e) central midfacial tissues (height of the upper lip); (f) palpebral pouches; and (g) nasolabial fold. ... 8
Figure 4 - Phi Mask from Marquardt .. 50
Figure 5 - Kodak DCS 560 Camera ... 52
Figure 6 - Female Faces Normalized and Cropped .. 53
Figure 7 - Male Faces Normalized and Cropped .. 54
Figure 8 - Female Composite Faces .. 56
Figure 9 - Male Composite Faces .. 57
Figure 10 - An Example of Phi Mask Fitting on F25 ... 60
Figure 11 - Measurement Focal Points Illustrated on F10 ... 60
Figure 11 - Measurement Focal Points Illustrated on F10 ... 61
Figure 12 - An Example of Measurement System on M37 ... 62
Figure 13 - Linear Regression Line of Internet AQ vs. Survey AQ (as can be seen from the tight scatter of the points around the line of regression there is a tight linear correlation between the two survey methods) ... 64
Figure 14a - Visual Comparison of Mean AQ by Number of faces (Internet, Survey, and Combined Arms) ... 66
Figure 14b - Visual Comparison of Mean MDS by Number of faces ... 67
Figure 15 - Plots of Multiple Linear Regression Predicted vs. Actual Combined AQ (for Both Sexes, Female and Male Sex) .. 69

Figure 16 (part i) – Farkas151 and Bashour Anthropometric Measurements .. 101

Figure 16 (part ii) – Farkas and Bashour Anthropometric Measurements .. 102

Figure 17 – Oestreicher and Hurwitz orbital measurements184 .. 104

Figure 18 – Matarasso and Terino Eyebrow Measurements186 .. 106

Figure 19 – Measurement points used by Cartwright et. al.188 Figure 20 – Measurement points used by Cartwright et. al.188 ... 108

Figure 20 – Measurement points used by Cartwright et. al.188 ... 109

Figure 21 – Westmore model of eyebrow arch position modified from Roth and Metzinger189 114

Figure 22 – Eyebrow arch position (a) Ideal (b) Normal modified from Roth and Metzinger189 115

Figure 23 – Measurements of eyebrow angles and orienting diagram .. 118

Figure 24 – Measurement of medial canthal tilt (top) versus palpebral fissure inclination (bottom) 120

Figure 25 – Claire Forlani (left), Jenniffer Connelly (middle), and Shalom Harlow (right) three famous beautiful women who have as their beauty trademark “tilted eyes” or “catlike eyes” or exaggerated canthal tilts. .. 120

Figure 25 – Claire Forlani (left), Jenniffer Connelly (middle), and Shalom Harlow (right) three famous beautiful women who have as their beauty trademark “tilted eyes” or “catlike eyes” or exaggerated canthal tilts. .. 121

Figure 26 – Harlequin mask and Japanese Manga Face .. 122

Figure 29 – Schematic of measurements modified from van den Bosch et. al.215 132

Figure 30 – Orbital Proportion Indices (Areal a-e; Interareal f-l)151 .. 135

Figure 31 – Male variant of phi mask15 and difference between male and .. 144

Figure 32 – Differences between patented and new version of phi mask (the thinner lines represent the
Figure 34 – Regression of AQ vs. MDS for Male Variant Phi Mask .. 145
Figure 35 – MLR of AQ vs. 35 Nodal Point Deviations Actual vs. Predicted Plots 152
Figure 36 – The head can be divided into equal halves at a horizontal line through the eyes223,234 183
Figure 37 - The face can be divided into equal thirds with the nose occupying the middle third223 183
Figure 38 - The head can be divided into equal quarters with the middle quarters being the forehead and nose respectively223,234 .. 183
Figure 39 - The length of the ear is equal to the length of the nose223 .. 184
Figure 40 - The distance between the eyes is equal to the width of the nose223 185
Figure 41 - The distance between the eyes is equal to the width of the each eye (the face width here can be thus divided into equal fifths)223,234 .. 185
Figure 42 - The width of the mouth is 1 ½ times the width of the nose223 .. 186
Figure 43 - The width of the nose is ¼ the width of the face223 ... 186
Figure 44 - The nasal bridge inclination is the same as the ear inclination ... 187
Figure 45 - The lower face can be divided into equal thirds and the lower face can be divided into equal quarters vs. real proportions found in average, attractive and most attractive faces216 187
Figure 46 - Proportions of the average, attractive, most attractive North American Caucasian face vs. the neoclassical canon face where each would be 25%216 .. 188
Figure 47 – Various Facial Planes .. 193
Figure 48 – Angle anb ... 193
Figure 49 – Profile Classes I, II and III .. 194
Figure 50 – Golden Section I .. 212
Figure 51 – Golden Section II ... 214
Figure 52 – Golden Triangle I .. 214
Figure 53 – Golden Triangle II .. 215
Figure 54 – Logarithmic Spiral I .. 215
Figure 55 – Golden Rectangle ... 216
Figure 56 – Logarithmic Spiral II ... 216
Figure 57 – Golden Pentagon .. 217
Figure 58 – Interplay of proportions between pentagon, pentagram, decagon, and star decagon.144 217
Figure 59 - Primary Pentagonal Complex and Contained Mask .. 223
Figure 60 - n=0; Z=1 .. 224
Figure 61 - n=1; Z=1 .. 225
Figure 62 - n=2; Z=1 .. 225
Figure 63 - n=2; Z=\(\phi/2\) ... 226
Figure 64 - n=2; Z=\(2/\phi\) ... 226
Figure 65 - n=2; \(Z = \frac{2}{\phi} \times \phi^{\frac{1}{3}}\) .. 227
Figure 66 - n=3, Z=1 .. 227
Figure 67 - n=3, Z=\(\phi^{\frac{1}{3}}\) ... 228
Figure 68 - n=3; Z = \(\phi^{\frac{2}{3}}\) ... 228
Figure 49 - n=4; Z=1 .. 228
Figure 70 - n=5; Z=1 .. 228
Figure 71 - n=5; Z = \(\phi/2\) ... 229
Figure 72 - n=5; Z=\(2/\phi\) ... 229
Figure 73 - n=6; Z=1 .. 229
Figure 74 - Graphical representation of placement of pentagon complexes to form phi mask 232
Figure 75 - Dodecahedron with internal radials .. 239
Figure 76 – Lateral View of Mask with Anthropometric Points13,14 .. 242
Figure 77 – Frontal View of Mask with Anthropometric Points13,14 ... 243
Chapter 1 - General Introduction

"The butterfly's attractiveness derives not only from colors and symmetry: deeper motives contribute to it. We would not think them so beautiful if they did not fly, or if they flew straight and briskly like bees, or if they stung..."

-- Primo Levi, (1919 - 1987) Italian writer, chemist

Introduction

Surgeons have as their mission to restore function and health to the patient, while minimizing morbidity and mortality, and maintaining or improving the final aesthetic outcome. In the last twenty years the emphasis on aesthetic outcome has moved into the forefront, not just in plastic surgery, but in all fields of surgery. Personally, as a facial plastic surgeon the most important thing to all my patients is the aesthetic outcome of the operation. This holds true even when I am performing reconstructive and functional facial plastic surgery, and not just when performing pure cosmetic surgery. Patients are very concerned about their facial appearance, and as surgeons (in the last few decades especially) we too have made aesthetic outcome a primary concern.
Coinciding with this new emphasis on aesthetic outcome, dramatic drives in cost containment and quality assurance have also been implemented in the health field. Administrators and managers utilizing as their major tools various objective outcome measurement systems have helped bring these changes about. In tandem with them, physicians have found these same tools to be an excellent means of self monitoring, allowing discrepancies and problems to be quickly picked up, and permitting objective surveillance of outcomes as changes in practice and technique are implemented.

Mostly as a result of the fact that cosmetic surgery is an elective procedure not paid for by third party payers, it has managed to largely escape the outcomes knife and its associated good and bad spin-offs. Surgical aesthetic outcome is currently evaluated by completely subjective methods1. Patient and surgeon subjectively decide if the aesthetic outcome is acceptable or not. The subjective nature of this evaluation does not allow for statistical outcomes analysis of surgical results, or for quality control. Little has been done to quantify these qualitative results in an objective manner2-4. Surgeons and patients and likely health administration and health payers would all benefit from an objective outcome measurement system.

Recently some investigators have begun to talk about the need for outcomes analysis in the aesthetic surgery field1. The approach they use is to create outcomes scales, and preliminary data indicates that they may have some utility2-4. However, the scales are still based on patient subjective evaluation, and while we agree that this is a very relevant measure, a purely objective outcome scale would be extremely desirable.

In a recent review by Ching et. al.1 of outcomes measurements for aesthetic surgery (facial and otherwise) 53 identifiable instruments were found in the literature extending back to 1961. These
instruments were divided into four subtypes, satisfaction assessments (6 found), objective assessments (5 found), psychological assessments (34 found) and quality of life assessments (8 found). For assessment the most commonly used method in all 53 identified instruments is comparison of preoperative and postoperative photographs, usually by a surgeon or an independent observer. Ching et. al.¹ feel that this method is limited “because there are no validated and reliable means to quantify results to make meaningful comparisons.” For another identified satisfaction assessment instrument, facial halves comparison by Hamra⁵, where two halves of a face one preoperative and one postoperative are combined together in a photograph, Ching et. al. state that its “evaluation is subjective, without a numerical assessment.”

In their review of objective assessments only five methods were found, which we ourselves have looked at in detail. These included Tapia et. al.⁶ who looked at their results of 685 rhytidectomies (face-lifts) by analyzing 4110 preoperative and postoperative digitized photos. They create a scoring system on twelve aspects of facial aging, 3 surgeons visually and subjectively score the preop photos (average score 9.75) and postop photos (average score 2.84) using this scoring system, and note an average improvement of 6.91 points. Tapia et. al. also looked at two objective measurements, the cervicomental angle (which improved an average of 20 º) and lifting of the eyebrows (the medial eyebrow average lift was 0.1275 cm, the central eyebrow average lift was 0.2259 cm, and the lateral eyebrow average lift was 0.2877 cm). No correlation between the subjective score and objective measurements was attempted; furthermore no mention is made of how the change in cervicomental angle relates to the improvement in patient result, and for the eyebrow measurements all that is said is: “we noticed a clear relation of greater lifting of the eyebrow corresponding to more satisfactory overall final results.” No data, statistical or otherwise was provided.
The second objective assessment identified by Ching et. al.1 was in Pitanguy et. al.7 In fact Pitanguy and his Brazilian colleagues designed an elegant objective system to model soft tissue changes with aging, not an objective system for assessing aesthetic outcomes, or capable of measuring facial attractiveness. The study was conducted using 40 women who had photographs of their face at least 5 years apart in time. These photographs were marked with 26 characteristic points (see Figure 1) (of interest to us is that 24 of these points were identical by chance to the 24 of the 37 points we used in our study). These points were used to calculate various linear distances on the face in each photograph and the change in the distance was normalized by dividing by the interpupillary distance for that subject (again this is of interest to us, because we also normalized the placement of the phi mask using the interpupillary distance). These normalized changes in anthropometric distances over time were fit by least squares using the second order polynomial that produced the smallest error. (See Figures 2 and 3 and refer to Pitanguy et. al.7 for more details). Essentially their method allows, after measuring and normalizing a photograph of a woman, prediction with a known amount of error, the appearance of that woman at a different age. In fact their method has been used to create a warping (aging/de-aging) program for facial photographs.
Figure 1 - Characteristic points defining the aging parameters.
The third objective assessment identified was in Yousif et. al.8 Yousif et. al. again did not directly create an objective system for assessing aesthetic outcomes, or capable of measuring facial attractiveness. They looked at a very specific facial feature the nasolabial fold using photogrammetry (anthropometric measurements from photographs) noting that with “aging there is anterior, lateral, and inferior displacement of the cheek mass with a resultant deepening of the nasolabial fold, while relationships between the upper lip and the fold itself remain constant.”8 This evidence was used to support the theory that the nasolabial fold is created by loss of support of the cheek mass complex, through gravitation and aging.

The fourth objective assessment identified was in Mishima et. al.9 This paper essentially announces that the authors have created two software systems that allow them to: (i) use a 3-D digitizer to automatically identify (AI) facial landmarks from a wire frame model of a plaster cast (only the area around the nose is described) and capture their 3-D coordinates and (ii) allow automatic superimposition (AS) of a postoperative wire frame model and calculate the displacement of the 3-D coordinates. Again this paper does not directly describe an objective system for assessing aesthetic outcomes, or capable of measuring facial attractiveness. It is of interest in that it looks at the displacement of essentially a 3D anthropometric wire model to evaluate the face pre-and postoperatively looking at the change in fit of the model as an objective measure of improvement.
Figure 2 - General aging curves for (a) the eyelids; (c), (d), (e), and (b) the central and lateral pouches of the face; (f) width of the nose.
Figure 3 - General aging curves for (a) the height of the lips; (b) and (c) central and lateral height of the forehead; (d) height of the nose; (e) central midfacial tissues (height of the upper lip); (f) palpebral pouches; and (g) nasolabial fold.7