Preface

Our aim, in writing this two volume textbook, is to provide a simple yet logical treatment of the bases of Chemical Thermodynamics. It is our experience that the level of understanding improves when appropriate justifications are generously provided. In the many years that this course has been taught, we have endeavored to find the most easily grasped explanations or justifications.

Volume 1 presents the fundamental aspects of thermodynamics. It is designed to be appropriate for a first contact with the topic of thermodynamics. We illustrate the first and second laws of thermodynamics, the need to define the thermodynamic temperature scale, and the nature of entropy. We show how spontaneous processes always correspond to an increase of the global entropy. We explore the meaning of auxiliary thermodynamics functions, the origin and usefulness of partial molar quantities. We look into the description of gaseous systems and phase equilibria in systems where chemical reactions do not take place.

Volume 2 contains the tools that are necessary to deal with systems where chemical reactions take place. The variables of reaction are a key to this understanding. Criteria for chemical equilibrium and spontaneity of reactions are established. We illustrate how chemical reactions can provide work as, for example, in batteries. We analyze the effect of external factors on chemical equilibria.

We finally present the more complex situation of solutions, going from ideal to real solutions. The statistical aspect of thermodynamics
and its importance are stretched and examined in the last chapter with many illustrative problems.

Most of the specific mathematical tools are presented either directly in the text if they are used mostly in one chapter, while material needed in several chapters is included in an appendix.

We have purposely kept intermediate steps in the derivations to enhance the clarity of the presentation.

To keep the topic easily accessible to beginners, we selected a primarily phenomenological approach.

Teachers may wish to include some of the problems provided as part of their lectures to illustrate points that they consider particularly important.

Students will definitely appreciate the problem sections where full solutions to the problems are provided to enhance the pedagogical value of this book.

Finally, it is a pleasure to thank here our colleagues who have contributed to improve this work by their varied comments and suggestions, Dr. G. Rothenberger and Dr. D. B. Matthews. Professor A. Wohlhauser provided invaluable help in the treatment of independent reactions. In the course of time, students and assistants have contributed to improve this book by their comments, suggestions and constructive criticisms. Finally, we thank the many individuals who read the final version of the manuscript helping to remove so many unaesthetic details.

Michael Graetzel Pierre Infelta

Department of Chemistry,
Swiss Federal Institute of Technology
Lausanne, Switzerland
Table of Contents

Volume 1

1 Thermodynamic Systems: Definitions ------------------------ 1
 1.1 Introduction --- 1
 1.2 Interactions of Thermodynamic Systems with their
 Environment --- 2
 1.3 System in a State of Equilibrium ------------------------ 3
 1.4 Thermal reservoir. Heat Source. ------------------------ 4
 1.5 Diathermal and Adiabatic Enclosures --------------------- 4
 1.6 State Function and State Variables. Intensive and
 Extensive Variables. ----------------------------------- 4
 1.6.1 Definitions and Properties ------------------------ 4
 1.6.2 Isobaric Coefficient of Thermal Expansion.
 Isothermal Compressibility Coefficient ---------------- 6
 1.7 Change of a State Variable as the Result of a
 Thermodynamic Process --------------------------------- 7
 1.7.1 General Process ----------------------------------- 7
 1.7.2 Cyclic Process ------------------------------------ 8
 1.7.3 Expansion and Compression of a Gas -------------- 9
 1.7.4 Mathematical Properties of a State Function ----- 10
 1.8 Reversible and Irreversible Processes ------------------ 11
 1.9 Equation of State --------------------------------------- 11

2 Work --- 13
 2.1 Introduction --- 13
 2.2 Sign Convention --- 13
 2.3 Mechanical Work -- 14
 2.3.1 Definition -- 14
 2.3.2 Work and Volume Change --------------------------- 15
 2.3.3 Examples -- 16
 2.4 Electrical Work --- 18
 2.5 Various Forms of Energy ------------------------------- 19
 2.6 Various Expressions for Work --------------------------- 20

3 First Law of Thermodynamics ----------------------------- 21
 3.1 Introduction --- 21
 3.2 The Joule Experiment ----------------------------------- 22
 3.3 Internal Energy. First Law -------------------------------- 22
 3.3.1 General Aspects. Expression of the First Law
 of Thermodynamics --------------------------------- 22
 3.3.2 Application to a Closed System --------------- 23
 3.4 Internal Energy – A Look at the Molecular Scale ------ 25

4 Second Law of Thermodynamics ---------------------------- 27
 4.1 Spontaneous Processes. Illustration at the Molecular
 Scale --- 27
 4.1.1 Spatial rearrangement ------------------------------- 27
The Bases of Chemical Thermodynamics

4.1.2 Heat Transfer ... 28
4.1.3 A First Glance at Entropy .. 29
4.2 First Formulation of the Second Law 31
4.3 Carnot Cycle. Heat Engine. Thermodynamic Temperature .. 32
 4.3.1 Carnot Cycle. Operation of an Engine 32
 4.3.2 Reversible Cycles of Two Distinct Systems 33
 4.3.3 Definition of the Thermodynamic Temperature 34
4.4 Entropy. Reversible and Irreversible Processes 35
 4.4.1 Definition ... 35
 4.4.2 Entropy is a State Function 36
 4.4.3 Implications of the Second Law towards Entropy and Spontaneity of Processes 38
 4.4.4 System in Contact with a Single Thermal Reservoir 41
 4.4.5 System in Contact with Several Thermal Reservoirs 42
 4.4.6 Other Formulations of the Second Law. Equilibrium Condition .. 43
 4.4.7 Thermal Equilibrium .. 43
 4.4.8 Differential Expression for the Internal Energy of a Closed System 45
 4.4.9 Maximum Usable Work during a Process 46
 4.4.10 Entropy Change during a Monothermal Expansion of an Ideal Gas 47
4.5 Carnot Cycle of an Ideal Gas ... 50
 4.5.1 Isothermal (Reversible) Process of an Ideal Gas .. 50
 4.5.2 Reversible Adiabatic Process of an Ideal Gas 51
 4.5.3 Properties of the Cycle ... 52
4.6 Heat Engines, Refrigerators, Heat Pumps 55
 4.6.1 Thermal Machines ... 55
 4.6.2 Efficiency of an Engine .. 55
 4.6.3 Refrigerator, Air Conditioner, Heat Pump 56
4.7 Internal Combustion Engine .. 58
 4.7.1 The Otto Cycle or Beau de Rochas Cycle 58
 4.7.2 Efficiency of an Engine .. 59
4.8 Other Examples .. 60
 4.8.1 Stirling Cycle .. 60
 4.8.2 Joule Cycle .. 63

5 Auxiliary Functions : Enthalpy, Helmholtz Energy, Gibbs Energy .. 65
 5.1 Introduction .. 65
 5.2 Closed Systems .. 66
 5.2.1 Constant Volume Process (Isochoric Process) 66
 5.2.2 Constant Pressure Process (Isobaric Process) 67
 5.3 Characteristic Variables. Fundamental Equations. Open Systems .. 68
5.3.1 Generalities .. 68
5.3.2 Internal Energy .. 69
5.3.3 Enthalpy .. 70
5.3.4 Helmholtz Function (Helmholtz Energy, Free Energy) .. 70
5.3.5 Gibbs Function (Gibbs Energy, Free Enthalpy) .. 71
5.3.6 Chemical Potential. Summary 72

5.4 Maxwell’s Relations .. 73

5.5 Thermodynamic Equation of State 75
5.5.1 General Case ... 75
5.5.2 Equation of State for an Ideal Gas 77

5.6 Properties of \(C_p \) and \(C_V \) 78
5.6.1 Relation between \(C_p \) and \(C_V \) 78
5.6.2 Variation of \(C_V \) with Volume and of \(C_p \) with Pressure .. 80

5.7 Physical Meaning of the Auxiliary Functions 81
5.7.1 Helmholtz Function (Free Energy, Helmholtz Energy) .. 81
5.7.2 Gibbs Function (Gibbs Energy, Free Enthalpy) 84
5.7.3 Spontaneous Evolution of a System. Equilibrium Condition .. 86

6 Pure Substances and Mixtures : Molar Quantities and Partial Molar Quantities 89
6.1 Homogeneous Functions and their Properties 89
6.2 Extensive Variables : Essential Property 90
6.3 Intensive Variables .. 91
6.4 Explicit Expressions for Various Extensive Variables 93
6.5 Gibbs-Duhem Equation 95
6.6 Partial Molar Quantities 96
6.6.1 Definition .. 96
6.6.2 Relation between Partial Molar Quantities 97
6.6.3 Pure Substance ... 98
6.6.4 Other Relations ... 98
6.7 Measurement of Partial Molar Volumes 100

7 Thermodynamics of Gases 105
7.1 Pure Ideal Gas .. 105
7.1.1 Chemical Potential of a Pure Ideal Gas 105
7.1.2 Selection of the Standard State Pressure 106
7.1.3 Mathematical Expressions of other Thermodynamic Functions of Ideal Gases 106
7.1.4 Entropy Change of an Ideal Gas due to a Change of State .. 107
7.2 Mixtures of Ideal Gases 108
7.2.1 Basic Properties, Ideal Gas Mixture 108
7.2.2 Entropy of Mixing, Gibbs and Helmholtz Energy of Mixing of Two Ideal Gases Forming an Ideal Gas Mixture .. 110
The Bases of Chemical Thermodynamics

7.2.3 Irreversible Mixing of Two Ideal Gases 113
7.2.4 Chemical Potential of an Ideal Gas in an Ideal Gas Mixture 113
7.2.5 Several Gases, Partial Molar Quantities, Functions of Mixing 114
7.3 Pure Real Gases 116
7.3.1 Molecular Interactions in Real Gases 116
7.3.2 Chemical Potential of a Pure Real Gas 118
7.3.3 Fugacity Coefficient of a Pure Real Gas 119
7.3.4 The Virial Equation 119
7.3.5 The van der Waals Equation of State 120
7.3.6 Joule–Thomson Effect 124
7.4 Mixtures of Real Gases 127
7.4.1 Chemical Potential of a Real Gas in a Mixture 127
7.4.2 Variables of Mixing for Real Gases 128
7.5 Ideal Mixtures of Gases 130
7.5.1 General Remarks 130
7.5.2 The Lewis–Randall Rule 132

8 Systems Made up of Several Phases with No Chemical Reaction 133
8.1 Introduction 133
8.2 Differential Expressions of State Functions 134
8.2.1 Fundamental Relations 134
8.2.2 Chemical Potentials at Equilibrium 135
8.2.3 General Expressions for Open Systems 136
8.3 Spontaneous Transfer of a Species from One Phase to Another 137
8.4 The Phase Rule 138
8.5 Equilibrium of Two Phases of a Pure Substance 139
8.5.1 The Clapeyron Equation 139
8.5.2 Equilibrium between a Gaseous Phase and a Condensed Phase (Liquid or Solid) of a Pure Substance 141
8.5.3 Schematic Representation of some of the Thermodynamic Functions in the Vicinity of a Phase Change 142
8.5.4 Effect of an Inert Gas on the Vapor Pressure of a Pure Substance 144
8.5.5 Effect of Temperature on the Latent Heat of Phase Change and on the Equilibrium Pressure 145
8.6 Phase Diagram of a Pure Substance 146
8.6.1 The Solid Exists in only One Crystalline Form 146
8.6.2 The Solid May Exist in Several Crystalline Forms 150

Problems and Solutions Chapters 1 through 8 153

Index
10.5.2 Other Forms of the Law of Mass Action 305
10.6 Chemical Equilibrium in the Presence of Pure Condensed Phases 307
 10.6.1 Chemical Potential of a Pure Condensed Phase. Activity 307
 10.6.2 Law of Mass Action for Heterogeneous Systems 308
10.7 Independent Reactions 310
 10.7.1 General Remarks 310
 10.7.2 Number and Nature of Independent Reactions 311
 10.7.3 Verifying the Independence of Reactions 315
 10.7.4 Consequences on Equilibrium and the Law of Mass Action 317
10.8 Phase Rule for Systems with Chemical Reactions 317
 10.8.1 Demonstration 317
 10.8.2 Examples of the Use of the Phase Rule 318
10.9 Effect of Temperature on the Equilibrium Constant 319
10.10 Displacement Laws of Equilibria 321
 10.10.1 Effect of Temperature 321
 10.10.2 Effect of Pressure 322
 10.10.3 Effect of Volume 323
 10.10.4 Effect of the Addition of an Inert Gas 323
 10.10.5 Effect of an Excess in One of the Reacting Species at Constant Pressure 324
10.11 Reduction of Iron Oxides 327
 10.11.1 Introduction and Method 327
 10.11.2 Reduction by Carbon Monoxide 328
 10.11.3 Reduction by Hydrogen 333

11 Thermodynamics of Perfect and Ideal Solutions 337
 11.1 Introduction 337
 11.2 Perfect Solution 340
 11.2.1 Isothermal Diagram 340
 11.2.2 Isobaric Representation 342
 11.3 Mixing Properties of Ideal Solutions 343
 11.4 Effect of Pressure and Temperature on Liquid Vapor Equilibria 344
 11.5 Depression of the Freezing Temperature of a Solvent in the Presence of a Solute 345
 11.6 Elevation of the Boiling Temperature of a Solvent in the Presence of a Solute 347
 11.7 Osmotic Pressure 348

12 Thermodynamics of Non Ideal Solutions 351
 12.1 Introduction 351
 12.2 Variables and Excess Variables of Mixing 352
 12.3 Effect of Temperature and Pressure on the Activity Coefficient 353
Table of Contents

12.4 Standard State – Convention I for the Activity Coefficient ... 354
12.5 Applications of the Gibbs–Duhem Equation .. 356
 12.5.1 Relation between Activity Coefficients in Binary Systems 356
 12.5.2 Equilibrium Shift. Azeotropy ... 357
12.6 Isothermal Diagram .. 360
12.7 Isobaric Diagram .. 361
12.8 Standard State – Convention II for the Activity Coefficient ... 362
12.9 Liquid – Liquid Extraction .. 366
12.10 Other Composition Scales and Standard States ... 367
 12.10.1 Molality ... 367
 12.10.2 Concentration .. 369
12.11 Law of Mass Action for Liquid Phase Systems ... 369
12.12 Electrolytes ... 371
 12.12.1 General Considerations .. 371
 12.12.2 Chemical Potential of Ions in Solution ... 372
 12.12.3 Dissociation Equilibrium .. 373
 12.12.4 Hydrogen Ion Convention for Aqueous Solutions ... 374
 12.12.5 Electrode Potential .. 376
13 Statistical Mechanics .. 377
 13.1 Introduction .. 377
 13.2 Statistical Models ... 379
 13.2.1 Maxwell–Boltzmann Statistics ... 379
 13.2.2 Bose–Einstein Statistics .. 380
 13.2.3 Fermi–Dirac Statistics ... 381
 13.2.4 Illustration of the Different Statistics in a Simple Case 381
 13.2.5 Dilute Systems. Corrected Boltzons ... 382
 13.3 Stirling’s Approximations ... 383
 13.4 Microcanonical Ensemble .. 384
 13.5 Thermodynamic Functions for a System of Corrected Boltzons 386
 13.6 A Simple System ... 388
 13.6.1 Energy Levels for a Particle in a Box ... 388
 13.6.2 Expression for the Partition Function .. 389
 13.6.3 Expressions for the Thermodynamic Functions .. 390
 13.7 Internal Degrees of Freedom ... 391
 13.8 Microcanonical Partition Functions ... 392
 13.8.1 Translational Partition Function ... 392
 13.8.2 Vibrational Partition Function .. 392
 13.8.3 Rotational Partition Function for Diatomic Molecules 394
 13.8.4 Rotational Partition Function for Polyatomic Molecules 395
 13.8.5 Electronic Partition Function ... 395
1 Thermodynamic Systems: Definitions

1.1 Introduction

The origin of thermodynamics lies in the study of the relations that exist between mechanical systems and heat. As the understanding of the chemical and electrical phenomena improved with time, the domain covered by thermodynamics expanded to include all physical and chemical processes that involve energy conversion. The goal we pursue in writing this book, is to study thermodynamics and its application to the understanding of chemical reactions. As we shall see, heat exchange, temperature and pressure play a fundamental role as far as the evolution of chemical systems is concerned.

Thermodynamics has the advantage of providing macroscopic information without requiring a detailed knowledge of the microscopic state of the systems under investigation. Thus, one can obtain information on whether certain chemical reactions are possible or impossible. One can determine if a state is or is not a state of equilibrium or obtain limiting values for some of the quantities that vary during a process. If a change can indeed be achieved from a thermodynamic point of view, other effects, such as those involving kinetically controlled processes, may totally prevent a system from evolving towards its equilibrium state. Space or time dependent heat transfer processes or heat conduction will not be investigated here.
1.2 Interactions of Thermodynamic Systems with their Environment

We will be led to investigate thermodynamic systems (bodies or ensemble of bodies) which, due to their very nature will be in contact with other systems in various ways. According to the problem at hand, what constitutes the system and what constitutes its environment has to be stated to remove any ambiguity. It is useful to classify systems with respect to the exchanges that may take place in three different categories.

• Isolated systems

In an isolated system, any modification of the environment has no effect on the system, and any change of the system has no effect on the environment either. Neither matter, nor energy in any form are exchanged between the environment and the system.

• Closed systems

A closed system is a system which may exchange energy in any form with the environment (work, heat…) but which cannot exchange any matter. We should note here that this does not preclude the possibility that chemical processes can take place inside the system (Internal chemical processes).

• Open systems

An open system can exchange both energy and matter with its environment.

The previous definitions are summarized in Table 1.1.

<table>
<thead>
<tr>
<th></th>
<th>Exchange with the environment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Matter</td>
</tr>
<tr>
<td>Isolated</td>
<td>No</td>
</tr>
<tr>
<td>Closed</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>No (b)</td>
</tr>
<tr>
<td>Open</td>
<td>Yes</td>
</tr>
</tbody>
</table>

(a) Systems with diathermal walls.
(b) Systems with adiabatic walls.

Table 1.1 Possible exchanges between a system and its environment.
1.3 System in a State of Equilibrium

A system is considered at equilibrium when no change takes place in it on a macroscopic scale, as time evolves. A small external perturbation is of no consequence to the system which returns to its equilibrium state when the perturbation ceases. We should point out here that, in some cases, some state, known as a metastable state, can exist even though such a state is not an equilibrium state from a thermodynamic point of view. Such a system should spontaneously evolve towards its equilibrium state, but for reasons that can be varied in nature, the expected evolution does not take place. In some instances, a small external perturbation may cause a spontaneous irreversible evolution towards a stable equilibrium state.

For a system to be at thermodynamic equilibrium, mechanical equilibrium must always be achieved. The vectorial sum of all mechanical forces applied to it must be zero.

If the system includes a gaseous phase†, its pressure has to be uniform.

Thermal equilibrium implies that temperature is the same at any point in the system.

A chemical system is at equilibrium if there are no variations of the composition of the system, in spite of the fact that local concentrations of some of the constituents may vary in a noticeable way in the various parts that make up the system.

We will deal with homogeneous systems, which have only one phase where the intensive variables†† of the system (T, p, composition of the system…) are uniform. We will also deal with heterogeneous systems where some of the intensive variables (composition of the system, specific weight…) may not be uniform.

A system is not at mechanical equilibrium if the sum of all mechanical forces applied to it is not zero.

If the pressure in the gas phase of a system is not uniform, gas movements will tend to take place.

If the temperature is not uniform, heat exchange will take place between various parts of the system.

If a system has not reached its chemical equilibrium, reactions will tend to take place and the concentration of some of the species will change with time. These reactions can be accompanied by energy exchanges of various forms.

† A precise definition of a phase will be given in chapter 8.
†† See § 1.6 for the definition of an intensive variable.
1.4 Thermal reservoir. Heat Source.

We will call thermal reservoir, a heat reservoir that stays at a constant temperature \(T \), under all circumstances. Moreover, it can exchange energy (with the system) exclusively in the form of heat. Its heat capacity is conceptually infinite. This means that a thermal reservoir remains at a constant temperature whatever the amount of heat it exchanges with a system. Such a thermal reservoir can therefore not be found in our real environment.

We will reserve the denomination heat source for a heat reservoir of finite heat capacity. A heat source with a very large heat capacity with respect to that of the system can be considered in general as a good approximation of a thermal reservoir. In practice, the temperature of a real heat source can be kept constant by supplying it with heat via some external means or by withdrawing heat from it.

1.5 Diathermal and Adiabatic Enclosures

A diathermal enclosure permits heat exchange between a system and its environment.

An adiabatic enclosure prevents any heat exchange between a system and its environment. We can mention two modes for heat exchange:

- \textit{via electromagnetic radiation}. Matter emits and absorbs electromagnetic radiation. Radiation can be stopped by means of a reflective wall.

- \textit{via conduction or convection}. These energy exchanges take place via microscopic motion or via macroscopic motion of matter respectively. Conduction can be prevented by a high vacuum between two walls.

1.6 State Function and State Variables. Intensive and Extensive Variables.

1.6.1 Definitions and Properties

The macroscopic state of a system is unequivocally defined by the knowledge of a certain number of state variables or state functions. Two
different kinds of variables are encountered: *Extensive variables* and *intensive variables*†.

- An **extensive variable** (or property) depends on the size of the system, for example U, the internal energy, H, the enthalpy, C_p, the heat capacity at constant pressure, C_V, the heat capacity at constant volume, S, the entropy, A, the Helmholtz energy, G, the Gibbs energy, V, the volume... Upon division of a system into several parts, an extensive property of the ensemble of the parts is the sum of the corresponding extensive property of each of the parts. Extensive properties of a system containing a pure species will be proportional to the number of moles of the species present.

- An **intensive variable** (or property) may have the same value in different subdivisions of a system. For example, p, the pressure, T, the temperature, are identical in all points of the system. Molar variables (properties) or partial molar variables, the specific mass, the refractive index, the molar heat capacity at constant pressure, $C_{p,m}$, have the same values in all points of one phase of the system. They may vary from one phase to another. If an intensive variable does not have the same value throughout a phase, then the system is not at equilibrium.

The number of variables needed to characterize the state of a system depends upon its nature. When we study in detail the **phase rule** (chapters 8 and 10), we will see how many intensive variables need to be known so that the other intensive variables are unequivocally determined.

For a system made up of a single chemical present as a single phase, only two intensive variables need to be known. Often one may select temperature and pressure as these two variables. The system will then be completely determined by knowing its mass or the number of moles in it. For a mixture of two chemicals that do not react and form a single phase, three intensive variables will need to be known. Knowledge of the pressure, temperature and mole fraction of one of the compounds will thus determine all of the intensive variables. The extent of the system can be known if the number of moles of one of its constituents is known.

The values of the state variables are independent of the ways by which the state may have been reached, and depend only on the state itself. We may consider **fundamental state variables or functions** such as U, the internal energy, V, the volume, S, the entropy, p, the pressure,

† See chapter 6 for an in-depth understanding of the mathematical properties of these variables.
T, the temperature. **Auxiliary state variables or functions** (H, the enthalpy, A, the Helmholtz energy also known as the free energy, C_V, the heat capacity at constant volume, G, the Gibbs energy also known as the free enthalpy) are obtained from fundamental variables by simple mathematical operations (chapter 5 and 6). We have for example:

\[
\begin{align*}
H &= U + p \ V & \text{Enthalpy} \\
A &= U - T \ S & \text{Helmholtz energy function} \\
G &= H - T \ S = U + p \ V - T \ S & \text{Gibbs energy function}
\end{align*}
\]

(1.1)

All of the essential theoretical developments of thermodynamics could be developed in terms of the fundamental variables. Auxiliary variables are, however, much better suited for some of the applications. Some of the variables are obtained by differentiating other variables:

\[
\begin{align*}
\left(\frac{\partial U}{\partial T} \right)_V &= C_V & \text{heat capacity at constant volume} \\
\left(\frac{\partial H}{\partial T} \right)_p &= C_p & \text{heat capacity at constant pressure} \\
\left(\frac{\partial U}{\partial V} \right)_{S, n_i} &= p & \text{pressure} \\
\left(\frac{\partial U}{\partial S} \right)_{V, n_i} &= T & \text{temperature}
\end{align*}
\]

(1.2)

1.6.2 Isobaric Coefficient of Thermal Expansion. Isothermal Compressibility Coefficient

These coefficients are intensive variables obtained by differentiating the volume with respect to temperature or pressure (chapter 6). For a pure compound, present as a single phase, the volume may be expressed as a function of the variables p, T, n (number of moles).

\[
V = V(p, T, n)
\]

(1.3)

\[
dV = \left(\frac{\partial V}{\partial T} \right)_{p, n} \ dl_T + \left(\frac{\partial V}{\partial p} \right)_{T, n} \ dl_p + \left(\frac{\partial V}{\partial n} \right)_{p, T} \ dl_n
\]

(1.4)
For a condensed phase (liquid or solid), we define the *isobaric coefficient of thermal expansion*, also known as *isobaric expansivity*, the relative rate of change of the volume of the system with temperature.

\[
\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{p, n}
\] (1.5)

We also define the *isothermal compressibility coefficient*, the relative rate of change of the volume of the system with pressure:

\[
\kappa = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_{T, n}
\] (1.6)

For a closed system, the number of moles does not vary (\(dn = 0\)). One can write:

\[
\begin{align*}
\frac{dV}{d\ln V} &= \frac{\alpha}{\beta} \frac{dT}{dV} - \kappa \frac{dp}{dV} = V (\alpha \frac{dT}{dp} - \kappa \frac{dp}{dV}) \\
&= \frac{\alpha}{\beta} \frac{dT}{dV} - \kappa \frac{dp}{dV}
\end{align*}
\] (1.7)

We just obtained an expression which allows us to calculate the variation of the volume of the system associated with an infinitesimal change in temperature and/or pressure, provided we know \(\alpha\) and \(\kappa\). It may sometimes be useful to also consider the *constant volume thermal expansion coefficient*:

\[
\beta = \frac{1}{p} \left(\frac{dp}{dT} \right)_{V, n}
\] (1.8)

1.7 Change of a State Variable as the Result of a Thermodynamic Process

1.7.1 General Process

We consider a change of a thermodynamic system from an initial state to a final state via two different paths, i.e. two different sequences of changes. Each of these changes is characterized by its own sequence of states (each characterized by values of some variables of state), that differ from one path to the other, but lead to the same final state (figure 1.2). Let \(X\) be a state variable which undergoes a variation during the process. The variation \((X_F - X_I)\) does not depend on the path selected to perform the process:

\[
(X_F - X_I)_{\text{path 1}} = (X_F - X_I)_{\text{path 2}}
\] (1.9)
Initial state \(I \) of the system

Final state \(F \) of the system

![Diagram of two states and paths](image)

Figure 1.2 Change of a system via two different paths.

The value of the state variable \(X \) depends only on the state itself, and not in the way it was reached.

1.7.2 Cyclic Process

We now consider a thermodynamic change of a system which reaches an intermediate state via path 1. Then path 2 is selected to bring the system back to its initial state. The global change that we just realized is known as a *cyclic process*. Such a process is schematically represented in figure 1.3.

![Diagram of cyclic process](image)

Figure 1.3 Schematic representation of a cyclic process. The final state is identical to the initial state.

The variation of the state variable \(X \) is zero for such a process, since the system is back to its initial state, which we may write:

\[
\int_{I}^{\text{Int.}} dX = \int_{\text{Int.}}^{I} dX + \int_{I}^{\text{Int.}} dX = 0 \quad (1.10)
\]
1.7.3 Expansion and Compression of a Gas

Figure 1.4 represents an example of a cyclic process of a gas where the initial state (1) and the final state are identical. Let us express the variation of the state variable *volume of the system* during this cyclic process.

\[
\oint dV = \int_1^2 dV + \int_2^3 dV + \int_3^1 dV = (V_2 - V_1) + (V_3 - V_2) + (V_1 - V_3) = 0
\] (1.11)

The line integrals indicate that the calculation has to be performed along the path represented by the curves on the figure. The system has the same volume at the end of the process as it did before it, and the variation of the volume is thus zero. The overall variation of any other state variable of this system is also zero.

A variable *X* (or a thermodynamic function) is a state variable (or state function) if its variation during a cyclic process is zero. *X* is also a state variable if its variation for a general process is independent of the means used to achieve this change as long as the initial and final states are identical. The differential form \(dX\) is said to be an exact differential. The line integral of an exact differential is independent of the path of integration. It depends only on the coordinates of the initial point (values of the variables used to define the initial state) and of the coordinates of the final point (values of the variables used to define the final state).
1.7.4 Mathematical Properties of a State Function

Let us assume that a state function \(X \) depends on the three variables of state \(x, y, z \). Following a cyclic process, the variables \(x, y \) and \(z \), go back to their initial values. The variation of \(X \) is thus zero for a cyclic process.

Let us examine the following differential expression:

\[
dX = A \, dx + B \, dy + C \, dz
\] (1.12)

This differential expression is known as an exact differential expression if the following property holds:

\[
dX = \left(\frac{\partial X}{\partial x} \right)_{y,z} \, dx + \left(\frac{\partial X}{\partial y} \right)_{z,x} \, dy + \left(\frac{\partial X}{\partial z} \right)_{x,y} \, dz
\] (1.13)

The integral of \(dX \) is \(X \). The coefficients of \(dx \), \(dy \), and \(dz \) are identical in equations 1.12 and 1.13.

\[
A = \left(\frac{\partial X}{\partial x} \right)_{y,z} \\
B = \left(\frac{\partial X}{\partial y} \right)_{z,x} \\
C = \left(\frac{\partial X}{\partial z} \right)_{x,y}
\] (1.14)

According to the Schwarz theorem, the second derivative of \(X \) with respect to two independent variables is independent of the order in which the derivations are performed. For the differential expression to be an exact differential expression, the following relationships must hold between its coefficients.

\[
\begin{align*}
\left(\frac{\partial^2 A}{\partial y \partial x} \right)_{z,x} &= \frac{\partial^2 X}{\partial x \partial y} = \frac{\partial^2 X}{\partial x \partial y} = \left(\frac{\partial B}{\partial x} \right)_{y,z} \\
\left(\frac{\partial B}{\partial z} \right)_{y,x} &= \frac{\partial^2 X}{\partial z \partial y} = \frac{\partial^2 X}{\partial y \partial z} = \left(\frac{\partial C}{\partial y} \right)_{x,z} \\
\left(\frac{\partial C}{\partial x} \right)_{y,z} &= \frac{\partial^2 X}{\partial x \partial z} = \frac{\partial^2 X}{\partial z \partial x} = \left(\frac{\partial A}{\partial z} \right)_{x,y}
\end{align*}
\] (1.15)

The integral of \(dX \) is then simply the function \(X \), the value of which is only dependent on the values of the variables. The variation of \(X \) for a cyclic process is zero, and for any arbitrary change of the variables, it is independent of the path followed to realize the process.
1.8 Reversible and Irreversible Processes

We will have to envisage reversible processes which cannot exist in our real world but for which we will be able to obtain precise information on thermodynamic systems. Here are the criteria for the reversibility of a process.

A process is reversible if:

• The intensive variables of the system (p, T, chemical potentials) have a uniform value throughout the system\(^1\).
• There is only an infinitesimal difference between the forces generating a motion and the forces preventing it.
• Losses are negligible (such as those due to friction, viscosity).
• The process is carried out via a continuous sequence of equilibrium states. In as much as an infinite time is necessary to achieve equilibrium, such a process can only be achieved at an infinitely slow rate.

Real processes are always irreversible, since they cannot rigorously satisfy any of the preceding criteria. A real process always has a finite rate, with dissipating effects, temperature gradients, finite rate of thermal exchanges, and a vessel wall that can never be totally adiabatic.

1.9 Equation of State

An equation of state is a relationship existing between some of the variables of state. For a system composed of a pure gas, the variables of state are the pressure, \(p \), the volume, \(V \), and the thermodynamic temperature, \(T \), (§ 4.3.3). In this instance, the knowledge of these variables implies that the number of moles of gas present in a system is completely determined.

For example, for a pure ideal gas, the ideal gas law provides the number of moles via the relationship:

\[
p V = n R T \tag{1.16}
\]

where \(R \) is the gas constant \((R = 8.314510 \text{ J K}^{-1}\text{mol}^{-1})\). The pressure is expressed in units of Pascals (Pa), the volume in cubic meters (m\(^3\)) and the temperature in kelvin (K).

\(^1\) If several phases are at equilibrium (heterogeneous system) the composition of the different phases may be different.
2 Work

2.1 Introduction

When chemical reactions take place, a certain amount of energy can be released and produce, for example, some mechanical work in a combustion engine, or some electrical work by means of a battery powered device. Thermodynamics is a science that allows a rational and quantitative study of these phenomena.

2.2 Sign Convention

When a thermodynamic system receives energy in any form, it is counted as a positive quantity. Reciprocally, when a system gives up energy to some part of its surroundings, then it is counted as a negative quantity. In thermodynamic studies, the laws are always expressed in such a way that the sign of the energy exchanges are always accounted for from the system point of view, whatever the system might be. This sign convention is now universally adopted for its simplicity and ease of use.
2.3 Mechanical Work

2.3.1 Definition

Let us consider a system submitted to an external force, \mathbf{F}, (Figure 2.1). When the application point of the force moves by an amount $d\mathbf{x}$, along the x axis, the mechanical work received (algebraically) by the system is given by:

$$dw = \mathbf{F} \cdot d\mathbf{x}$$

$$dw = |\mathbf{F}| \cos \alpha \, dx$$

$$w = \int_{x_1}^{x_2} |\mathbf{F}| \cos \alpha \, dx$$ \hspace{1cm} \text{(2.1)}$$

for a finite displacement from x_1 to x_2 along the x axis.

\[\text{Figure 2.1} \quad \text{System submitted to an external force.}\]

Let us note here that the elementary work dw expressed in equation 2.1 has the appropriate sign with respect to the sign convention that we have expressed in § 2.2.

- If the external force vector \mathbf{F} has a component in the same direction as the displacement taking place, then the corresponding elementary work is positive. The system receives work.

- If the external force vector \mathbf{F} has a component in the opposite direction with respect to the displacement, then the corresponding elementary work is negative, and the system gives energy to the surroundings.
2 Work

2.3.2 Work and Volume Change

We are now going to examine the exchange of work related to the increase or decrease of the volume of a system. This represents a particular case of mechanical work.

2.3.2.1 Volume Increase, Expansion

When the volume increases during the process, the gas is said to undergo an expansion. It can be the case when a chemical reaction takes place and leads to an increase in the number of moles of gas present (at constant pressure).

![Diagram of gas inside a tank closed by a piston](image)

Figure 2.2 Gas inside a tank closed by a piston. The external force may be caused by some pressure.

Let us consider a system made up of a gas contained in a cylindrical container closed by a piston of area A. Whatever does not belong to the system is called the environment or the surroundings of the system. Let us assume that the only external force exerted on the piston is due to the external pressure as depicted in Figure 2.2. If the pressure p_{int} is larger than the pressure p_{ext}, the piston will have a spontaneous tendency to move to the right. The force exerted by the surroundings onto the piston has magnitude $p_{\text{ext}} A$. This force is directed towards the left. For an infinitesimal displacement dx, the system does work on the surroundings; $d\omega$ is negative. We can write:

\[
\begin{align*}
|\mathbf{F}| &= p_{\text{ext}} A \\
\text{opposite to the direction of the displacement} \\
\int d\omega &= -p_{\text{ext}} A \ dx = -p_{\text{ext}} \ dV \\
\frac{dV}{dx} &= A \\
\text{volume increase during the process} \\
dx > 0 &\Rightarrow dV > 0
\end{align*}
\] (2.2)
2.3.2.2 Volume Decrease, Compression

Let us consider a gas undergoing a compression. Such a process will have the tendency to take place spontaneously if the pressure p_{int} is less than the outside pressure p_{ext}. In this case, work is done on the system by the surroundings, since the displacement takes place in the same direction as the external force. The same formula as above can be used; Δw is positive, since the variation of the volume is, this time, negative.

\[
\Delta w = -p_{\text{ext}} A \Delta x = -p_{\text{ext}} \Delta V
\]

(2.3)

2.3.3 Examples

2.3.3.1 Process at Constant External Pressure

Let us envisage the case where a gas expands ($p_{\text{ext}} < p_{\text{int}}$), while the outside pressure p_{ext} remains constant. The work received by the system during such a transformation is:

\[
\Delta w = -\int_{V_I}^{V_F} p_{\text{ext}} dV = -p_{\text{ext}} \int_{V_I}^{V_F} dV = -p_{\text{ext}} (V_F - V_I)
\]

(2.4)

It can be seen that the work received by the system depends on the external pressure, i.e. the outside, and does not depend on the inside pressure of the system. For the expansion under study, negative work is done on the system, the final volume, V_F being larger than the initial volume, V_I.

As a particular case, we can examine an experiment where the external pressure is zero, $p_{\text{ext}} = 0$. The work done on a system during such a process is zero. The same formalism can be applied to a compression at constant external pressure, since we did not really make use of the fact that we were studying an expansion. The work done on the system will, however, be positive in this eventuality.
2.3.3.2 Volume Work during Chemical Reactions

Let us consider a system made up of one mole of CO$_2$ and four moles of H$_2$ at 25°C under atmospheric pressure. Assume that the following reaction takes place at constant pressure and temperature.

\[
\text{CO}_2 + 4 \text{H}_2 \rightarrow \text{CH}_4 + 2 \text{H}_2\text{O (liq)} \tag{2.5}
\]

Let us evaluate the work done on the system when the reaction has proceeded completely from left to right. The pressure is still one atmosphere and the temperature 25°C. Here we only consider the work due to the change in the volume of the system, and ignore the energetics of the chemical reaction. The volume work is given by:

\[
w = -p_{\text{ext}} (V_F - V_I) \tag{2.6}
\]

Let us use, as a good approximation, the equation of state for an ideal gas and neglect the volume of the liquid water formed in the reaction with respect to the final gas volume. We obtain:

\[
p_{\text{ext}} V_I = 5 R T \\
p_{\text{ext}} V_F = R T
\]

\[
w = 4 R T = 4 \text{ mol} \cdot 8.31 \text{ J K}^{-1} \text{ mol}^{-1} \cdot 298 \text{ K} = 9906 \text{ J} \tag{2.7}
\]

2.3.3.3 Work during an Isothermal (Reversible) Change of an Ideal Gas

During an isothermal change, the temperature of the system stays constant and is the same at every point. For a system where a mechanical process is the only process that can take place, such a process is possible only if it is reversible.† Let us consider a (reversible) isothermal expansion of a gas confined in the system depicted in figure 2.2. This process is a continuous succession of equilibrium states. The volume of the gas varies from volume V_I to volume V_F. The external force applied to the piston in every intermediate state exactly compensates the force due to the internal pressure of the system since each of these states is a state of equilibrium. We can imagine that we apply at every instant an external pressure, p_{ext} equal to p_{int}. The external pressure is slowly decreased in such a way as to be only marginally smaller than the

†An isothermal yet irreversible process can be imagined. Consider a system where a chemical reaction can spontaneously, thus irreversibly, take place. Such a process can indeed be isothermal if heat exchanges are sufficiently fast compared to the rate of the reaction.
internal pressure. (This could be practically realized by placing the cylinder in a vertical position, with appropriate little masses placed on it. Then, one could slowly remove small fractions of these masses). Under these conditions, the work done on the gas for an infinitesimal process is given by:

\[\text{d}w = -p_{\text{ext}} \text{d}V = -p_{\text{int}} \text{d}V \] \hspace{1cm} (2.8)

We can easily obtain a formal result for a finite isothermal (reversible) process of an ideal gas. The ideal gas law can be used since, at every moment, the gas is at equilibrium. The internal pressure \(p_{\text{int}} \) can be expressed as a function of the volume of the gas. The expression for the work received by the gas is:

\[
\begin{align*}
\text{w} &= \int_{V_I}^{V_F} \frac{n R T}{V} \text{d}V = -n R T \ln \left(\frac{V_F}{V_I} \right) \\
&= -n R T \ln \left(\frac{V_F}{V_I} \right)
\end{align*}
\] \hspace{1cm} (2.9)

The same expression would be obtained for an isothermal compression.

2.3.3.4 Remarks

For systems interacting with a force field, the gravity field for example, it is necessary to perform a global balance of the external forces acting on the system. Work is algebraically done on the system upon displacement of the point where an external force is applied to it. It is important to mention that a reversal of the displacement direction keeping all external forces unchanged, implies a change of the sign of the work done on the system. For a finite process, a change in the sign of each elementary displacement, while the system goes through the same intermediate states (identical forces), defines a new process referred to as the reverse process. The work done on the system during the reverse process is therefore opposite to that done on it during the direct process.

2.4 Electrical Work

A battery can transform potential chemical energy into electrical work. The chemical reaction is carried out at electrodes. A voltage \(E \) exists between the positive and the negative poles of the battery. \(E \) is
known as the source voltage or the electromotive force (e.m.f.) and it is defined to always be positive. It corresponds to the potential difference between the potential of its positive pole \(\phi_+ \) and that of its negative pole \(\phi_- \):

\[
E = (\phi_+ - \phi_-) \quad (2.10)
\]

The values for the potentials \(\phi_+ \) and \(\phi_- \) depend on an arbitrary reference potential while \(E \) does not depend on this reference. Consider a charge \(dQ \), supplied, for example by a battery, going from a potential \(\phi_+ \) to a potential \(\phi_- \) (\(\phi_+ > \phi_- \)). The work done on the system (the battery) is:

\[
dw = - (\phi_+ - \phi_-) dQ = -E dQ \quad (2.11)
\]

A positive charge that moves from the positive pole + (high potential), through the external circuit, to the negative pole – (low potential) implies that work is delivered by the system to the outside. This corresponds to the normal operation of a battery.

![Battery](image.png)

Figure 2.3 A battery.

A positive charge going from the negative pole – (low potential), through the external circuit, to the positive pole + (high potential) corresponds to work received by the battery. In this charging process, energy is stored in the battery under a chemical form. The electric potential (the voltage) has units of Volts (V) and the charge has units of Coulombs (C). The charge of one mole of a singly charged ion is 1 Faraday (F). (\(F = N_A e = 96485.309 \text{ C mol}^{-1} \)).

2.5 Various Forms of Energy

Energy can be found in various forms. We may cite electrical, mechanical and thermal energy. Other forms have their origin in chemical, electromagnetic, gravitational and nuclear interactions.
2.6 Various Expressions for Work

For systems in which work has origins other than those mentioned until now, appropriate expressions must be used to express the work in each case. The work is always obtained as a scalar product of the force by an elementary displacement. However, specific formulas are used that involve appropriate intensive variables for the system under study.

Thus, if we increase by dA the area A of a system with interfacial tension σ, the work done on the system is:

$$dw = \sigma \, dA$$ \hspace{1cm} (2.12)

For an increase dz of the altitude of an object of mass m in the gravity field g, the work done on the system is:

$$dw = m \, g \, dz$$ \hspace{1cm} (2.13)

Lengthening an elastic material by dl under tension T does work on the system, given by:

$$dw = T \, dl$$ \hspace{1cm} (2.14)

The work done on a substance in a magnetic field B with a magnetic moment dM, is:

$$dw = B \, dM$$ \hspace{1cm} (2.15)
3 First Law of Thermodynamics

3.1 Introduction

One can experimentally observe energy exchanges between bodies and these exchanges can be classified according to the macroscopic nature of the interactions that take place.

As an example, a windmill moves under the action of the wind. The kinetic energy of the wind is transformed into mechanical work, the interaction being purely mechanical.

Heat exchange can take place between several parts of a system, as the heating of a pot of water over a fire. When several systems are in thermal contact for a long enough time, thermal equilibrium can be attained, all of the systems ending up at the same temperature. This can be observed when mixing hot and cold liquids, in which case the thermal contact is excellent.

Some phenomena involve simultaneous exchanges of heat and work. Frictional forces on solid surfaces give rise to dissipative phenomena which consist in the destruction of some form of mechanical energy to generate heat. The brakes of a vehicle transform its kinetic energy into heat.

Conversely, thermal engines, such as the steam engine, partially transform heat into mechanical energy.

We propose to describe here some of the experiments which have, in the past, provided the fundamental observations needed to formulate some of the rules applicable to these energy exchanges and that constitute the first law of thermodynamics.
3.2 The Joule Experiment

Around the middle of the 19th century, Joule demonstrated experimentally the equivalence between mechanical energy and heat by means of a series of experiments that are briefly described below.

A system containing water is surrounded by an adiabatic wall. A paddle wheel is operated by a weight falling in the gravity field of the earth. The temperature of the liquid rises due to the viscosity forces (friction) in the liquid. The temperature rise is directly related to the amount of work received by the system which corresponds to the decrease in the potential energy of the weight. Joule showed that the same temperature rise could be attained using an electrical resistor heated by electric current.

Using varied experimental conditions, Joule was able to show that the amount of work received by the system and the amount of heat needed to produce the same temperature rise are proportional. The conclusion was straightforward. Heat and work are of the same nature and constitute different forms of energy. They can therefore be expressed in the same units.

The joule (symbol J) is the SI unit of energy. Frequently one still encounters in practical applications the calorie (symbol cal) to express amounts of heat. One calorie corresponds to the amount of heat that is needed to get one gram of water from 14.5°C to 15.5°C. We have the equivalence 1 cal = 4.1840 J.

3.3 Internal Energy. First Law

3.3.1 General Aspects. Expression of the First Law of Thermodynamics

Let us consider a thermodynamic system. By delivering to this system energy as heat and/or work, the system will evolve from an initial state I to a final state F. We define a function U, which we call the internal energy, that only depends on the state of the system. This function must account for all energy exchanges, relevant to the problem at hand, taking place between the system and its environment. The state of the system has to be characterized by a number of variables, called state variables, which we shall investigate later. In a significant number of instances, the potential energy of the system in the gravity field of the earth need not be taken into account. The effect of external fields or the variation of the kinetic energy of the macroscopic system must be
accounted for separately, but we do not envisage here cases where they need to be taken into account.

The first law of thermodynamics deals with the internal energy U and can be stated as:

The internal energy of a system is a state function.

An immediate consequence is that *the differential of the internal energy U is an exact differential.*

3.3.2 Application to a Closed System

3.3.2.1 Adiabatic Process

Let us consider a *closed system* contained inside an adiabatic enclosure. The work done on the system during an adiabatic process corresponds to the change in its internal energy. This was the case in the Joule experiment. We can write:

$$U_F - U_I = w_{\text{adiabatic}}$$ (3.1)

The work done on a system during an adiabatic process is equal to the change of its internal energy U.

3.3.2.2 General Process

We now consider a system that can exchange energy with its environment as *work* or *heat*. We give in figure 3.1 a schematic representation of the process envisaged here in terms of two state variables x and y.

During a process, the state of the system is characterized at all stages by an appropriate number of state variables. Starting from its initial state I, the system goes through a number of intermediate states along path 1 to end up in its final state. The variation of the internal energy U during this process is:

$$U_F - U_I = w_1 + q_1$$ (3.2)

Let us now assume that we know how to get the system from the same initial state I to the same final state F via a different path 2. Since the internal energy U is a state function, the consequence of the first law is:

$$U_F - U_I = w_2 + q_2 = w_1 + q_1$$ (3.3)
Figure 3.1 Schematic representation of two different processes bringing a thermodynamic system from state I to state F, along two different paths.

The first law implies that the sum of the work and the heat received by the system is the same between two given states whatever method is used to achieve the change. We will find that, in general, $w_1 \neq w_2$ and $q_1 \neq q_2$.

3.3.2.3 Cyclic Process

Let us consider a process that brings the system from state I to state F along path 1. Assume we can now continue the process by bringing the system, back to state I, along path 2 but in the direction ($F \rightarrow I$). The global process is known as a cyclic process. During this cyclic process, the amount of work w is done on the system while an amount of heat q, is taken in by it. The corresponding variation of the internal energy is:

$$\Delta U = U_F - U_I + (U_I - U_F) = 0 = w + q$$ \hspace{1cm} (3.4)

During a cyclic process, the variation of the internal energy U of a system is zero.

The sum of the work and heat received by a system during a cyclic process is zero.

3.3.2.4 Infinitesimal Process

The differential form of equation 3.3 is:

$$dU = dw + dq$$ \hspace{1cm} (3.5)
and dU is an exact differential. The variation of the internal energy during an infinitesimal process of a closed system is the sum of the work and heat, it receives. The amount of heat and work received by a system are therefore not state variables. They depend on the way the process has been carried out. The differential forms dw and dq are not exact differentials. The result obtained by integrating dw or dq depends on the path selected to carry out the integration.

3.4 Internal Energy – A Look at the Molecular Scale

Let us study a system made up of gas molecules. These molecules are in constant motion. The energy of each single molecule is modified at every instant by means of collisions with other molecules or with the walls of the container. These changes take place in such a way that, on the macroscopic level, no change in the energy of the system takes place. It is impossible but also unnecessary to know the individual behavior of each molecule. However, for a system in thermal equilibrium, it is possible to determine the average number of molecules which, at any moment, have a given value of their energy. To achieve this goal, one uses Statistical Mechanics, with appropriate distribution laws and quantum mechanics to obtain with the help of the Schrödinger equation, the energy levels that are available to the molecules (See chapter 13).

Thus, for example, if the energy level ε_i is occupied by N_i molecules, the internal energy of the system is given by:

$$U = \sum_i N_i \varepsilon_i$$ \hspace{1cm} (3.6)

where the sum applies to all energy levels accessible to the molecules in the system. We will see in chapter 13 how it is possible to obtain some information on the properties of various systems with these methods.