This book is Dedicated

to

My Wife Dr. Khoorsheed Jahan Maula and my children Ishtiaq Al Mamoon and Imtiaz Al Mamood who often missed me because of my pre-occupation with “Principles & Practice of Urology: A comprehensive text”.

PREFACE

Why another textbook on Urology? There is always a universal demand of appropriate good book in any subject. Despite the existence of numerous monographs on urology there remains a desperate need for a book emphasizing the scientific background and principles of patient care for the student trainees and reinforcing such concepts for the practicing urologists in the developing world.

Urology now a days is a subject of growing importance and the need for a comprehensive text on the basic principle of general urology was deeply felt by the author, by the trainees and students. All medical writings are practically rewritings plus the recent advances, but they are presented in a different format suitable for the specific class of readers or users. Despite many good books available, an appropriate book is needed in between the users and the advanced texts.

Principles & Practice of Urology is not intended to replace the existing textbook nor it can provide the minute details contained in scientific journals. Instead the author expects that the book will serve as a rapid review of clinically important informations for the postgraduate students, residents, trainees and practicing surgeons and urologists. It is also expected to provide much of the updated informations in an identifiable and understandable format.

The purpose of composing this text is to guide and assist the students, residents, trainee doctors of urology and this book may be used as a text or reference book by the senior students in medical colleges. A space is kept on the left side of the page for the reader to record his personal note. This book is expected to be helpful for the consultant general surgeon who is working in a hospital where there are no urologists.

I do solicit additional modification, correction and criticism which may be addressed to me.

M.A. Salam MBBS, FCPS, FICS
House no 24, Road no 5
Dhanmondi R/A, Dhaka 1205
Bangladesh
E-mail : salamuro@yahoo.com
Fax. 8802 8118385
I am greatly indebted to many individuals who helped me in the preparation of this book. Those to whom I express my special thanks for their help are Dr. Pranashis Saha, Dr. Jinnat Hossain & Dr. Rafiqul Abedin who helped me in planning, writing, editing and reading the proof of the manuscript. I am also thankful to Prof. MA Hadi, Vice-Chancellor, Bangabandhu Sheikh Mujib Medical University, Prof. MA Wahab, Prof. SAMG Kibria, Prof. Rashid-E-Mahbub, Prof. Atai Rabbi, Prof. Abu Ahmed Ashraf Ali, Prof. SN Addity, Dr. AKM Anwarul Islam, Dr. Sajid Hasan, Dr. AZM Zahid Hossain, Dr. Ishtiaq Ahmed Shamim, Dr. Golam Maula Chowdhury, Dr. Shuvro and many others for their constant encouragement, active help and suggestions to improve the quality of the book. Dr. AKM Khurshidul Alam should be credited for final proof reading.

I am especially thankful to my two secretaries Mr. Noor Mohammad and Mr. Rony. Mr. Noor Mohammad should be credited for typing the whole manuscript and taking dictations mostly at odd times beyond his working hours. Mr. Rony, an excellent young man, covered the responsibilities of graphic designs and more importantly created the medical illustrations. Without their help this book would not be possible to complete in this format.

Many of my associates and friends like Prof. AQ Khan, Prof. Selim Bhuiyan, Prof. Abdul Awal, Dr. ABM Abdullah, Dr. Naimul Haque, Dr. HK Chowdhury, Dr. Pinaki Bhattacharia, offered me helpful criticisms, suggestions and technical help to improve the text and my sincere thanks to all of them.

My special thanks for Mr. Saiful Islam Khan, Proprietor, Md. Oliullah, Khandker Atiquur Rahman, Computer Operator and other peoples of Asian Color Printing for their active patronization and help to prepare the book.

I am particularly grateful to Prof. AP Pandy, Prof. Sakti Das, Prof. Adibul Hasan Rizvi, Prof. NP Gupta, Prof. DD Gour, Prof. Anwar Naqvi, Prof. KT Foo, Prof. Kazmi and many other internationally recognized urologists for their active encouragement to publish this book.

I am indebted to Mr. Jeff Young and Ms. Shereen Siddiqui of Brown Walker Press for their support in publishing this book.

I am also grateful to the Ministry of Education’s Government of People’s Republic of Bangladesh for the active encouragement and support for this work. My sincere thanks to my wife and children who have encouraged me all the times to complete the works and by doing that they have missed many sweet moments of family life.

M.A. Salam MBBS, FCPS, FICS
House no 24, Road no 5
Dhanmondi R/A, Dhaka 1205, Bangladesh
E-mail: salamuro@yahoo.com
Fax: 8802 8118385
CONTENTS

Volume-I

Section 1 (Evolution of Urological Techniques)
- Mile stones of urology 3

Section 2 (Clinical Observation)
- Presentation of urological disease 19

Section 3 (Investigations of Urological Disease)
- Lab test 43
- Radiation & contrast media in urology 53
- Radiological investigations for urological patients 57
- Contrast urography 60
- Principles of the ultrasound in urology 64
- Renal ultrasound 68
- Bladder ultrasound 74
- Ultrasound imaging of prostate 76
- Scrotal ultrasonography 81
- Doppler principles 85
- Computerized tomography (CT scans) 88
- Magnetic resonance imaging (MRI) 93
- Nuclear medicine in the genitourinary tract 98

Section 4 (Paediatric Urology)
- Applied anatomy of genito-urinary tract 107
- Ambiguous genitalia 115
- Developmental anomalies of the upper urinary tract 123
- Ureteropelvic junction obstruction (Hydronephrosis) 143
- Bladder extrophy complex 150
- Abdominal masses in children 153
- Wilms’ tumor 155
- Rhabdomyosarcoma (RMS) 161
- Diseases of urachus 163
- Prune-belly syndrome 164
- Vesico-ureteric reflux (VUR) 166
- Posterior urethral valves 172
- Repair of epispadias 177
- Repair of hypospadias (Current trends) 181
- Phimosis 201
- Paraphimosis 203
- Balanoposthitis 205
- Empty scrotum (Undescended testis) 206
Section-5 (General Urology)

- Metabolic disorders 213
- Antibiotic prophylaxis for urological infection 220
- Lower urinary tract symptoms (LUTS) 227
- Polyuria, pneumaturia and faecaluria 234
- Haematuria 236
- Principles of chemotherapy for gu cancers 241
- Principles of radiotherapy 254
- Principles of laser therapy practicing urology 263
- The elderly urologic patient 269
- Renovascular hypertension 291
- Tissue engineering 296
- Retroperitoneal masses in adults 302
- Chronic genital pain 305
- Scrotal mass 308

Section-6 (Emergency Urology)

- Acute stone management 317
- Acute urinary retention 322
- Genitourinary trauma 327
- Priapism 341

Section-7 (Genitourinary Infection)

- Urinary tract infections 349
- Septic shock 361
- Sexually transmitted diseases 364
- Genitourinary tuberculosis 370
- Interstitial cystitis 380

Section-8 (Genitourinary Obstruction)

- Obstructive uropathy 387

Section-9 (Female Urology)

- Stress urinary incontinence (SUI) 399

Section-10 (Neuro-Urology)

- Applied anatomy of the bladder 419
- The physiology of vesico-urethral segment 424
- Uropharmacology 428
- Urodynamic studies 431
- Overactive bladder 460
- Over view of neuropathic bladder 466
- Spastic type of neuropathic bladder 475
- Flaccid type of neuropathic bladder 485
- Incontinence 492
- Myelomeningocele 504
- Spinal cord injury 506

Index 514
Section-11 (Reconstructive Urology)
- The urethra: 517
- Urethral strictures and management: 519
- Urinary fistula: 545
- Urinary diversion: 560
- Bladder reconstruction or cystoplasty: 573

Section-12 (Uro-Oncology)
- Disorders of adrenal gland: 581
- Renal tumors: 587
- Urothelial carcinoma: 602
- Upper tract transitional cell tumors (TCC): 629
- Prostate & BPH: 635
- Benign prostatic hyperplasia (BPH): 640
- Prostate cancer: 665
- Cancer of the penis: 696
- Cancer of the urethra: 701
- Testicular cancer: 703

Section-13 (Urolithiasis)
- Urinary stone disease: 721

Section-14 (Reproductive Urology)
- The testis and epididymis: 743
- Peyronie’s disease: 745
- Male infertility: 748
- Erectile dysfunction (Impotence): 767
- Penile lengthening: 786

Section-15 (Practical Urology)
- Catheters for urological works: 791
- High frequency electro surgical apparatus (Diathermy equipment): 808
- Urological equipments: 817
- Irrigating solutions for urological endoscopic surgery: 834
- Imaging for teaching documentation work: 831
- Urethrocystoscopy: 836
- Transurethral resection of the prostate and bladder neck: 840
- Endoscopic assessment and treatment of bladder tumors: 867
- Ureterorenoscopy (URS): 879
- Percutaneous endoscopic renal surgery: 887
- Laparoscopy for the urologist: 903
- Principles of intravesical chemotherapy & immunotherapy: 913
- Common practical problem for the residents: 916

Section-16 (Renal Transplantation)
- Renal physiology: 927
- Acute renal failure: 933
- Chronic renal failure: 941
- Dialysis: 946
- Kidney transplantation: 952

Index
- 981
Evolution of Urological Techniques
Prelude

Urological diseases are as old as mankind. This is understood from the discovery of a vesical calculus in the pelvis of a mummy from a prehistoric tomb in Egypt, which was approximately seven thousand years old. Urological expertise was also well known in the prehistoric time where the circumcision was clearly described.

Prehistoric Urology in Different Parts of World

India

In ancient Indian texts stone disease is well described and lithotomy, although regarded as hazardous even in expert hands, was undoubtedly practiced. These accounts, should be credited to the Indian surgeon, Susruta in the 6th century BC. He described the trans perineal removal of bladder stones. Susruta described the various urethral bugie for dilatation of the stricture urethra.

Susruta recognized the four kinds of calculi caused by phlegm, bile, air or semen and he also described the stone prophylaxis in stone disease by prescribing strict vegetarian diet. He described the treatment of extravasation of urine by incision in the perineal region. He practiced urethral installation of medicine for treating gonorrhea.
Middle East

The Sumerians recognized parts of the urologic anatomy, including the kidneys and penis, as early as 4000 BC. Persian medical references are found from around 1000 BC and stone diseases and catheterization are mentioned in later treatises. However, even by the Middle Ages, little further progress had been made, and lithotomy does not appear to have been employed until relatively recent times. In Hebrew medicine, ‘circumcision’, as in Egypt, was a religious procedure. Avicenna, Abul Quassim etc. described flexible catheter and uroscopy.
Greece

Medicine in Ancient Greece long predates Hippocrates. The worship of Aesculapius had led to the building of many temples, which later became medical schools. Hippocrates, born on the Greek island of Cos in 460 BC. He recognized and described stone disease, but also stated ‘I will not cut persons laboring under the stone but will leave this to be done by practitioners of this work’. Possibly this was the earliest recommendation for specialization.

Fig. 01-05: Avicenna (930-1037). His cannon of Medicine combined principles of Hippocrates, Galen and Islamic medicine with contemporary practices. He discussed uroscopy and advocated soft and flexible materials for catheters, made from animal skins. (Courtesy: American Urology Association)

Fig. 01-06: Arab physician Abûl Qâsim of 14th century using red iron to cautarize a scalp lesion. (Courtesy: Christoph Mörgeli, Surgeon stage a history of the operating room, 1999. F Hoffmann-La Roche Ltd. Basel, Switzerland)

Fig. 01-07: Hippocrates separated medicine from religion Defined numerous disease. His theory of causation of stones was valid until paracelsus (460-377 BC). (Courtesy: American Urology Association)
Renal and bladder injuries and disorders were described by Hippocrates, and reference made to the drainage of renal abscesses. He regarded wounds of the bladder as carrying a very grave prognosis, and it may have been this view that held surgeons back from the trans abdominal approach of the bladder.

Rome

The Greeks brought surgery to Rome and it was Celsus, living in Rome in the 1st century AD. He made the description of lithotomy that was to hold good with little change through to the end of the 18th century. In Celsus’s time catheters were made of bronze, and some of these, demonstrating the traditional double curve, found in the excavations of Pompeii.

The Greek physician Galen, living and traveling through Asia Minor in the 2nd century AD, brought together in his writings many of the theories of medicine that were current in his day. He described lower urinary tract obstruction and supported Celsus’s technique of lithotomy.

Perineal lithotomy

With its origins in the techniques of theSusruta and later that of Celsus, two types of perineal lithotomy developed. Hence surgeons were slow to take up this technique. The first successful suprapubic lithotomy was probably done by Pierre Franco in the early 16th century, removing a large calculus from a child’s bladder by this approach. James Douglas, who is famous of pouch of Douglas, described the surgical anatomy of the bladder in 1717.
Endourethral lithotomy

The origins of this technique go back to ancient Egypt, with attempts to dilate the urethra and primitive procedures to fragment bladder calculi.

Probably the most eminent lithotriptist of his day was the London surgeon Sir Henry Thompson, who successfully dealt with stone of King Leopold.
62) demonstrated intrarenal anatomy, Bartholomeus Eustachius (1520-74) took these studies further, and Lorenzo Bellini (1628-1704) and Marcello Malpighi (1628-94) refined them. These and many other anatomic discoveries laid the foundation for the advances in physiology and surgery that contributed to the development of modern urology.

19TH CENTURY

Vesalius (1514-64) corrected their studies in 1543, and can certainly be considered to be the father of urologic anatomy. Gabriel Fallopius (1523-

Fig. 01-11 : Sir Henry Thommpson performing lithotrity upon Napoleon Ill. The anesthetist is Joseph Clover and Sir William Gull is standing behind Sir Henry Thompson.

(Courtesy : Murphy Leonard JT. History of Urology Charles C Thomas Publisher Springfield, Illinois, USA 1972)

62) demonstrated intrarenal anatomy, Bartholomeus Eustachius (1520-74) took these studies further, and Lorenzo Bellini (1628-1704) and Marcello Malpighi (1628-94) refined them. These and many other anatomic discoveries laid the foundation for the advances in physiology and surgery that contributed to the development of modern urology.

Urologic Infections

Venereal infection has been described since ancient times and both gonorrhea and syphilis were recognized and differentiated by physicians from all the ancient cultures. Giovanni Morgagni (1682-1771) first used the term gonorrhea in 1761, but by 1750 John Hunter (1728-93) in his London lectures had already described various forms of urethral inflammation.
Genitourinary Tuberculosis

The remains of ancient skeletons have confirmed the characteristic changes of tuberculosis, indicating that the disease affected humans in about 4000BC. It is also known that it was a common disease in Egypt in about 1000BC, and in 375BC Hippocrates described phthisis as a lingering illness that was worse in winter, resulted in emaciation, caused diarrhea, and was terminal.

CATHETERS AND UROLOGICAL INSTRUMENTATION

Catheters can be traced back into antiquity and were in common use in India and the ancient Greece of Hippocrates. Early catheters were usually made of metal, often bronze, and later silver, copper, and brass, but other materials, including treated paper, cloth impregnated with wax, horn, or green bamboo sticks, were also used. Both terminal and end-side orifices had their vogue. From an early time catheters were curved and by the Middle Ages the double curve had become established.

In the 19th century a gum elastic catheter with its angled neck, the Cude catheter of L.A. Mercier, became widely used, and the first attempts at a self-retaining catheter date from the same period of about 1840. With the advent of rubber, Auguste Nelaton (1807-73) developed the first catheter of this type. With the invention of latex rubber, Dr. F.E.B. Foley produced his balloon catheter and demonstrated it at the American Medical Association meeting in Atlantic City in 1935.

It was refined further in the 19th century, along with the steady advance in urologic techniques. Up to recent times a malecot type of catheter was inserted through a metal cannula introduced with a trocar, but these have been superseded by the modern silastic balloon catheter fitted with intergal trocher.

Fig. 01-12 : Bronze catheters used during 1st century AD by Celsus

(Courtesy : Murphy Leonard JT. History of Urology Charles C Thomas Publisher Springfield, Illinois, USA 1972)
Antoine Desormeaux (1815-82), the father of endoscopy, introduced his cystoscope in Paris in 1853. He was the first surgeon to succeed in designing an endoscopic instrument that had both diagnostic and therapeutic value for urology. As a light source he used a so-called gazogene lamp, which burnt a mixture of turpentine and alcohol. His endoscope was made of silver tubes, into which he projected light, using a combination of lenses and a mirror set at an angle of 45°. Francis Cruise, an Irish surgeon in Dublin, collaborated with Desormeaux and demonstrated his first instrument in 1865. He found that the brightest illumination available was the flat flame of a petroleum lamp with camphor dissolved in the petroleum and the intensity of the flame increased by a tall draught chimney. He also designed new sheaths for examination of
the urethra, bladder, and other body cavities, and urologists using a bladder catheter filled with boric solution were able to inspect the greater part of the bladder mucosa.

None of the techniques available attracted much attention until a young urologist in Berlin decided to reopen the whole question of endoscopy. Max Nitze (1848-1906) had two new ideas. First, in 1876 he used lenses in the form of a miniature telescope to magnify the image down the endoscope, and secondly he illuminated the interior of the bladder by a water-cooled electric platinum filament.

With cystoscopy it was necessary to catheterize repeatedly during inspection, a painful procedure for the patient. Nitze succeeded in
occurred. In 1887 the German Alexander Brenner designed a catheterizing cystoscope with a curved catheter that could be inserted into the ureter. In 1896 a French urologist, Joachim Albarran (1860-1912), developed a system by which the catheter could be elevated or lowered by a small lever that could be sunk into a slot near the tip of the instrument.

Towards the end of the 19th century two further developments had occurred. In 1887 the German Alexander Brenner designed a catheterizing cystoscope with a curved catheter that could be inserted into the ureter. In 1896 a French urologist, Joachim Albarran (1860-1912), developed a system by which the catheter could be elevated or lowered by a small lever that could be sunk into a slot near the tip of the instrument.

Rodlens systems for urological endoscope

The most important advance since Nitze in 1876 has been the development of the Hopkins rod-lens system. In 1957 J G Gow of Liverpool requested Professor Harold Hopkins of Reading University to make improvements to the optical design of telescopes. This resulted in the publication of
Hopkins’s patent in 1977. He described how the total light transmission through the telescope was 80 times greater than the traditional system.

It was achieved by replacing the air spaces in between the objective lense and eye piece lense of long telescope. Use of coated rod glass lenses of high reflective index interspaced with air make the telescope excellent for viewing the interior of the body. Still the resolution and clarity of image provided by rod lens system is the best.